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Abstract 

 
A new approach is presented to find the ridge parameter k when the multiple regression model suffers 

from multicollinearity. This approach studied two cases, for the value k, scalar, and matrix. A comparison 

between this proposed ridge parameter and other well-known ridge parameters evaluated elsewhere, in 

terms of the mean squares error criterion, is given. Examples from several research papers are conducted 

to illustrate the optimality of this proposed ridge parameter k. 
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1 Introduction 

 
Multiple linear regression is a well-known method for studying the relationship between dependent variable 

and explanatory variables. The mathematical from for this regression is:  

 

                             

 

                = 1, 2, …, n 
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where n is the number of observations. The matrix form of this regression is: 

 

                                                                                                                (1) 

 

where y is a nx1 vector of response variables, X is a known n x p matrix of the explanatory variables with 

full rank,   is a nx1 vector of errors with zero mean and var-cov. matrix     .   is a px1 vector of unknown 

regression coefficients. For simplicity we assume that the matrix X and the vector y are standardized such 

that the matrix     is the correlation matrix of the explanatory variables and     is the correlation between 

the matrix X and the vector Y. The following ordinary least squares (OLS) estimators are obtained by 

minimizing the sum of the squares of error    . 

 

  
   

      
  

                                                                                          (2) 

 

where   
   

 is an unbiased estimate for  . This ordinary least squares estimator works with some 

assumptions such as linearity independent identically distributed errors with zero mean and constant 

variance, homoscedasticity.  

 

In regression analysis, when two or more regressed variables are linearity related it is called 

multicollinearity. Multicollinearity problem tends to produce     estimates that are unstable, having wrong 

sign coefficients, raises the value of the variance of the coefficient estimates and it makes it more difficult to 

specify the correct model. Therefore, alternative methods have been proposed to overcome the problem of 

multicollinearity. Ridge regression method is introduced [1] to overcome the problem of multicollinearity. 

The paper is organized such that the ridge regression and the ridge parameter are presented in section two. 

The proposed ridge parameters are given on section three. Application of this proposed ridge parameters on 

three examples from researched papers is given in section four and section five end by conclusion. 

 

2 Ridge Regression 

 
Ridge regression method is one of the most popular methods that has been proposed by [1]. It is obtained by 

adding a small positive number k  to the diagonal elements of the matrix      so the ridge regression 

estimator will be: 

 
  
 

 
           

                                                                                             

  

where k≥ 0 is known as the ridge (or the biased) parameter and estimated from the studied data. [1] showed 

that, for k ≥ 0, the ridge regression estimator provides a smaller mean squares error (MSE) than the least 

squares estimator. The most important problem is to find the value of the ridge parameter k, much 

discussion, concerning the problem of finding a good value for k has been held. Many different techniques 

have been proposed or suggested by various researchers. Some of them are, [1-29], and very recently, [30], 

among others.  

 

All of the above mentioned technique treat the ridge parameter k as a scalar and calculate its value 

depending on the estimated mean squares error (MSE)  and (or) the eigenvalues of the     matrix, 

maximum value, variance inflation factor (VIF) and the estimated values of       (   
 

   
   

 
    

,    
  

  ). 

 

3 Proposed Estimator for Ridge 

 
In this article, we present a new method to estimate the ridge parameter k. As we mentioned earlier that most 

of the researcher depending on the ridge parameter k as a constant value. In this section, we will consider the 

ridge parameter k as a scalar, and as a matrix. 
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3.1 Case one k is constant 

 
In this case, we assume that the ridge parameter k is constant. Equation (3) which represent the ridge 

regression estimator is: 

 

  
 

 
           

        

 

which can be written as: 

 

    
 

 
                  

 
 

 

 

or 

 

   
 

    
 

  

  
   

    
 

 

 
   
 

 
        

 
 

 
           

 
 
   

 

To find the value of the ridge parameter k, we suggest to use the eigenvalues  1,  1, … ,  p of the     matrix 

instead of the ridge regression estimator   
 

 
 , so that: 

 

  
 

 
  

 

   
  

   

                                                                           (4) 

 

Substituting    
 

 
  from equation (4) instead of k in equation (3), we get 

 

  
 

 

 
        

 
 
                                                                              

 

Note that     
 

 

 
 depends on the correlation between X and Y, and the eigenvalues of     . 

 

3.2 Case 2 K is a matrix 

 
Assuming that the ridge parameter K is a vector, from equation (3), we get 

 

            
 

 

 
                                                                        (6) 

 

    
 

 

 
               

 
 

 
   

 

We suggest to use the vector  of the eigenvalues of     matrix instead of the ridge regression 

estimator     
 

 

 
. 

 

i.e. 

 

                     
 

We use Moore - Penros inverse [31] to find the inverse of   which states that: 

 

                  
 

      
                                                     (7) 

 

which implies that  
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                                                                                  (8) 

 

Substituting equation (8) in equation (6), we get: 
 

  
 

 

 
                                                                                

 

Notice that    in eqution (9) can also calculated from      :  

a: as a diagonal matrix depending on the   eigenvalues of       
b: or a matrix depending on the values of the eigenvector of      
 

The two methods for calculating     in equation (9) in addition to equation (4) will be used in the next 

section.  

 

4 Examining the Performance of the Proposed Ridge Parameter 

 
In this section, we give some numerical examples to illustrate the performance of our proposed estimate for 

the ridge parameter k. 

 

4.1 Example 1 

 
We consider the data set on Portland Cement originally due to [32] which has since then been widely 

analyzed by [33,34,35,36,37]. These data come from an experimental investigation of the heat evolved 

during the setting and hardening of Portland cements for various compositions. The dependence of this heat 

is on the percentages of four compounds, these compounds are tricalcium aluminate: 3CaO. Al2O3, 

tricalcium silicate: 3CaO.SiO2, tetracalecium aluminoferrite: 4CaO. Al2O3 .Fe2O3and   -dicalcium silicate:  

2CaO.SiO2, denoted by x1, x2, x3 and x4 respectively. The heat evolved after 180 days of curing, denoted by 

y, is measured in calories per gram of cement. To assess the effects of the four compounds, the following 

multiple linear regression model is assumed to specify the relationship between the normalized response 

variable y and the normalized explanatory variables X1, X2, X3 and X4: 

 

                                                                                   (10) 

 

The following table gives the estimated values of the regression coefficient using equations (2), (4)   and (6) 

for ordinary least squares and the proposed ridge parameters with their MSE and the values of K. 

 

Table 1. Estimated values of the regression coefficient with the MSE for OLS and the proposed ridge 

parameter 

 

Methods                 MSE 

O.L.S. 0.6065 0.5277 0.0434 -0.1603 0.0264 

Proposed ridge parameter constant  0.3885 0.5904 -0.4423 -0.5241 0.03512 

Proposed ridge parameter vector 0.5014 0.2870 -0.0669 -0.4165 0.00224 

Proposed ridge parameter matrix -0.8799 2.8113 0.2969 -0.0021 0.73174 

 

From Table 1 we see that the estimated MSE for the proposed ridge regression K vector is smalls than the 

proposed ridge parameter (k scalar and K matrix), and it is also smaller than the O.L.S. 

 

4.2 Example 2 

 
We considered the data obtained from Tagi gas filling company for the time period 2008 – 2016 [38]. To 

assess the effects of the four explanatory variable X1, X2, X3 and X4 on the response variable Y, where Y 

represents the annual output of liquid gas cylinders and the explanatory variables refer to craftsman, 
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administrators, technicians and engineers respectively. [38] used the Tagi gas filling company, data to 

compare the performance of the following ridge parameters: 

 

    
                     

 

   
 

   

 
  

     

     
         

   
 

 

   
 

  

 
  

     

     
            

   
 

 

   
 

    

 
        

        

   
     

     
     

     
            

  

  
        

  

 

and 

 

   
 

  

 
               

     

     
       

   
  

 

    
     

 

To illustrate the performance of our proposed ridge regression parameter, Table 2 gives the MSE of this data 

using: ordinary least squares, the compared procedures given by [38], and our proposed ridge regression 

parameter. 

 

Table 2. Estimated mean squares error MSE for the O.L.S. given by [38] and our proposed ridge 

regression K 

 

 

 

MSE 

Methods 

O.L.S.    
 

   

 
    

 
  

 
    

 
    

 
    

 
  

 
 Proposed ridge K 

Constant Vector Matrix 

0.051646 0.071295 0.157356 0.173969 0.099103 0.03358 0.015783 0.24745 

 

From Table 2, we see that the estimated mean squares error MSE for the proposed ridge regression K 

(vector) is the smallest value. 

 

4.3 Example 3 

 
The following regression model is fitted to the data in which the number of persons employed y are 

regressed on five predictor variables 

 

                                            

 

Where: 

 

X1: is the land cultivated (million hectares) 

X2: is the inflation rate %, X3 is the number of establishment, X4 is the population (million) and X5 is the 

literacy % [39]. 

 

The following table gives the estimated values of the regression coefficients, using equations (2), (4) and (6) 

for ordinary least squares and the proposed ridge parameter with their mean squares error and the values of 

K. 
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Table 3. Estimated values of the regression coefficients with the mean squares error 

 

Methods                      MSE 

O.L.S. 0.0333 -0.03837 -0.1817 1.1328 0.0322 0.0130 

Pasha & Shah 

K = 0.055 0.1870 0.0501 0.1203 0.4702 0.18812 2.5006  

KLw= 0.4233 0.211 0.088 0.182 0.257 0.216 1.366 

Proposed ridge parameter k 

Constant 0.255194 0.342032 0.257692 0.261923 0.250528 0.0060518 

Vector 0139150 0.018756 0.110335 0.498856 0.241100 0.0007416 

Matrix 1.88264 0.10350 0.01497 -0.04181 -0.01050 0.0424754 

 

Where 

 

   
   

     

    
       

 
 
  
        [5] 

 

  =          ,    
                           

 

We see, from Table 3, that the estimated mean squares error for the proposed ridge parameter K when it is a 

vector is the smallest value.  

 

5 Conclusion 

 
In this paper, we found a new formula to obtain the ridge regression parameter k, we studied two cases for k, 

scalar and matrix from. We have compared the proposed ridge parameter to well known ridge parameters 

through three data sets and demonstrated, using two case studies, the improvements in MSE using our the 

proposed ridge parameter for the case k is a vector. 
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