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Abstract

In this study, we bring into light a new generalization of the Jacobsthal Lucas numbers, which
shall also be called the bi-periodic Jacobsthal Lucas sequence as

ĉn =

{
bĉn−1 + 2ĉn−2, if n is even
aĉn−1 + 2ĉn−2, if n is odd

n ≥ 2,

with initial conditions ĉ0 = 2, ĉ1 = a. The Binet formula as well as the generating function
for this sequence are given. The convergence property of the consecutive terms of this sequence
is examined after which the well known Cassini, Catalan and the D’ocagne identities as well as
some related summation formulas are also given.
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1 Introduction

Due to the numerous applications of integer sequences such as Fibonacci, Lucas, Jacobsthal,
Jacobsthal-Lucas, Pell etc in many fields of science and art, there have been many generalizations
on them over the last century. In 1973, the first use of these numbers appears “A Handbook of
Integer Sequences” in a paper by Sloane by the title applications of Jacobsthal sequences to curves
[1]. You can see some of these different generalizations in our references [1], [2], [3]. In 1988,
Horadam introduced the Jacobsthal and Jacobsthal–Lucas sequences recursively as where n ≥ 2
as jn = jn−1 + 2jn−2,with the initial conditions j0 = 0, j1 = 1 and cn = cn−1 + 2cn−2, with the
initial conditions c0 = 2, c1 = 1 respectively [4]. In [2], Horadam demonstrated the properties of
the Jacobsthal and Jacobsthal–Lucas sequences in detail. Koshy’s book [3] is an elaborate book for
Fibonacci and Lucas numbers. For any natural number n and any nonzero real numbers a and b,
the bi-periodic Fibonacci sequence, also known as the generalized Fibonacci sequence was defined
recursively by Edson and Yayenie [5], [6] as

qn =

{
aqn−1 + qn−2, if n is even
bqn−1 + qn−2, if n is odd

n ≥ 2

with initial conditions q0 = 0, q1 = 1. In the same way, the bi-periodic Lucas sequence was defined
recursively by Bilgici [7] as

ln =

{
bln−1 + ln−2, if n is even
aln−1 + ln−2, if n is odd

n ≥ 2

with initial conditions l0 = 2, l1 = a. He also found some interesting identities between the above
two sequences. The authors in [8], [9], [10], [11], [12], [13], [14], [15] gave interesting properties of
bi-periodic sequences.

Fibonacci and Lucas sequences continued to receive a lot attention over the years. In [16], Uygun
and Owusu defined a new generalization for the Jacobsthal sequence {ȷ̂n}∞n=0, which they called
the bi-periodic Jacobsthal sequence as

ȷ̂0 = 0, ȷ̂1 = 1, ȷ̂n =

{
aȷ̂n−1 + 2ȷ̂n−2, if n is even
bȷ̂n−1 + 2ȷ̂n−2, if n is odd

n ≥ 2.

They then obtained the Binet formula as follows

ȷ̂n =
a1−ε(n)

(ab)⌊
n
2 ⌋

(
αn − βn

α− β

)
where ⌊a⌋ is the floor function of a and ε(n) = n − 2

⌊
n
2

⌋
is the parity function. α and β are the

roots of the nonlinear quadratic equation for the bi-periodic Jacobsthal sequence which is given
as x2 − abx − 2ab = 0. In [8], [9], [11] the authors carried bi-periodic sequences to bi-periodic
Fibonacci, Lucas and Jacobsthal matrix sequences. The authors, in [12] gave interesting properties
of bi-periodic Jacobsthal and bi-periodic Jacobsthal-Lucas sequences. Uygun and Karatas, in [17]
introduced bi-periodic Pell-Lucas sequence. In [13], [14], Y. Choo examined some identities of
generalized bi-periodic Fibonacci sequences. In [18], Gul studied on bi-periodic Jacobsthal and
Jacobsthal-Lucas quaternions. In [15], Komatsu and Ramı́rez, gave convolutions of the bi-periodic
Fibonacci numbers.

Now in this paper, just as the generalized Jacobsthal sequence and the others mentioned above,
we define a new generalization for the Jacobsthal-Lucas sequence which we shall also call the bi-
periodic Jacobsthal-Lucas sequence. We will then proceed to find its generating function as well
as the Binet formula. The convergence properties of the consecutive terms of this sequence will be
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examined after which Cassini, Catalan and D’ocagne identities as well as some related formulas and
properties will be given.

For any two non-zero real numbers a and b, the bi-periodic Jacobsthal-Lucas sequence denoted by
{ĉn}∞n=0 is defined recursively by

ĉ0 = 2, ĉ1 = a, ĉn =

{
bĉn−1 + 2ĉn−2, if n is even
aĉn−1 + 2ĉn−2, if n is odd

n ≥ 2. (1)

If a = b = 1 is chosen, we have the classic Jacobsthal-Lucas sequence. If we set a = b = k, where k
can be any positive number, we get the k−Jacobsthal-Lucas sequence.

The first five elements of the bi-periodic Jacobsthal-Lucas sequence are

ĉ0 = 2, ĉ1 = a, ĉ2 = ab+ 4, ĉ3 = a2b+ 6a, ĉ4 = a2b2 + 8ab+ 8.

From (1), we obtain the nonlinear quadratic equation for the bi-periodic Jacobsthal-Lucas sequence
as

x2 − abx− 2ab = 0

with roots α and β defined by

α =
ab+

√
a2b2 + 8ab

2
, β =

ab−
√
a2b2 + 8ab

2
. (2)

2 Main Results

Lemma 1. The bi-periodic Jacobsthal-Lucas sequence {ĉn}∞n=0satisfies the following properties:

• ĉ2n = (ab+ 4)ĉ2n−2 − 4ĉ2n−4,

• ĉ2n+1 = (ab+ 4)ĉ2n−1 − 4ĉ2n−3.

Proof.

ĉ2n = bĉ2n−1 + 2ĉ2n−2

= b(aĉ2n−2 + 2ĉ2n−3) + 2ĉ2n−2

= (ab+ 2)ĉ2n−2 + 2(ĉ2n−2 − 2ĉ2n−4)

= (ab+ 4)ĉ2n−2 − 4ĉ2n−4

The other proof can be done similarly.

Lemma 2. α and β defined by (2) satisfy the following properties;

• (α+ 2) (β + 2) = 4,

• α+ β = ab, αβ = −2ab,

• β + 2 = β2

ab
, α+ 2 = α2

ab
,

• −(α+ 2)β = 2α, −(β + 2)α = 2β.

Proof. By using the given definitions of α and β, the identities above can easily to be proven.
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Theorem 2.1. The generating function for the bi-periodic Jacobsthal-Lucas sequence is given by

C(x) =
2 + ax− (ab+ 4)x2 + 2ax3

1− (ab+ 4)x2 + 4x4
(3)

Proof. The proof is done by using two different methods.

(1) The generating function for C(x) can be represented in power series by

C(x) =

∞∑
m=0

ĉmx
m = ĉ0 + ĉ1x+ ....+ ĉkx

k + ...

By multiplying through this series by ax and 2x2 respectively and simplifying, we obtain

(1− ax− 2x2)C(x) = ĉ0 + xĉ1 − axĉ0 +

∞∑
m=2

(ĉm − aĉm−1 − 2ĉm−2)x
m.

By using the By using the Equation (1), we have

(1− ax− 2x2)C(x) = 2 + ax− 2ax+

∞∑
m=1

(ĉm − aĉm−1 − 2ĉm−2)x
2m.

Since ĉ2m = bĉ2m−1 + 2ĉ2m−2, we have

(1− ax− 2x2)C(x) = 2− ax+

∞∑
m=1

(b− a)ĉ2m−1x
2m.

Now we define c(x) as

c(x) =

∞∑
m=1

ĉ2m−1x
2m−1.

By using Lemma (1) and multiplying through c(x) by (ab+4)x2 and 4x4 respectively and simplifying
as done above, we obtain

(1− (ab+ 4)x2 + 4x4)c(x) =
∞∑

m=1

ĉ2m−1x
2m−1 − (ab+ 4)

∞∑
m=2

ĉ2m−3x
2m−1

+4

∞∑
m=3

ĉ2m−5x
2m−1

= (ĉ1x+ ĉ3x
3)− (ab+ 4)ĉ1x

3

+

∞∑
m=3

(ĉ2m−1 − (ab+ 4)ĉ2m−3 + 4ĉ2m−5)x
2m−1

= ax+ 2ax3 + 0.

Hence

c(x) =
ax+ 2ax3

1− (ab+ 4)x2 + 4x4
.

Plugging c(x) into C(x), we obtain

(1− ax− 2x2)C(x) = 2− ax+ (b− a)x

(
ax+ 2ax3

(1− (ab+ 4)x2 + 4x4)

)

4



Uygun and Owusu; JAMCS, 34(5): 1-13, 2019; Article no.JAMCS.53359

By simplifying this equation, we get

C(x) =
2 + ax− (ab+ 4)x2 + 2ax3

1− (ab+ 4)x2 + 4x4
.

which completes the proof.

(2) We want to show the other proof of this theorem.

C(x) =

∞∑
m=0

ĉmx
m = ĉ0(x) + ĉ1(x) =

∞∑
m=0

ĉ2mx
2m +

∞∑
m=0

ĉ2m+1x
2m+1

We simplify the even part of the above series as follows

ĉ0(x) = 2 + (ab+ 4)x2 +

∞∑
m=2

ĉ2mx
2m

By multiplying through by (ab+ 4)x2 and 4x4 respectively, we have

(ab+ 4)x2ĉ0(x) = 2(ab+ 4)x2 + (ab+ 4)

∞∑
m=2

ĉ2m−2x
2m,

and

4x4ĉ0(x) = 4

∞∑
m=2

ĉ2m−4x
2m.

By using Lemma (1), it is obtained that[
1− (ab+ 4)x2 + 4x4

]
ĉ0(x) = 2− (ab+ 4)x2.

Hence we get

ĉ0(x) =
2− (ab+ 4)x2

1− (ab+ 4)x2 + 4x4
.

Similarly, the odd part of the above series is simplified as follows

ĉ1(x) = ax+ (a2b+ 6a)x3 +

∞∑
m=2

ĉ2m+1x
2m+1.

By multiplying through by (ab+ 4)x2 and 4x4 respectively, we have

(ab+ 4)x2ĉ1(x) = a(ab+ 4)x3 + (ab+ 4)

∞∑
m=2

ĉ2m−1x
2m+1,

and

4x4ĉ1(x) =
∞

4
∑

m=2

ĉ2m−3x
2m+1.

By using Lemma (1), it is obtained that[
1− (ab+ 4)x2 + 4x4

]
ĉ1(x) = ax+ (a2b+ 6a)x3 − a(ab+ 4)x3 + 0.

Hence

ĉ1(x) =
ax+ 2ax3

1− (ab+ 4)x2 + 4x4
.

By adding the two results above, we obtain C(x) as

C(x) =
2 + ax− (ab+ 4)x2 + 2ax3

1− (ab+ 4)x2 + 4x4
.

which completes the proof.
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Theorem 2.2. For every n belonging to the set of natural numbers, the Binet formula for the
bi-periodic Jacobsthal-Lucas sequence is given by

ĉn =
aε(n)

(ab)⌊
n+1
2 ⌋ (αn + βn) . (4)

Proof. It must be noted that the parity function can also be expressed as

ε(n) =

{
0, if n is even
1, if n is odd

From the previous theorem, the generating function for the bi-periodic Jacobsthal-Lucas sequence
can be written in partial fractions using partial fraction decomposition as,

C(x) =
1

4(α− β)

[
2a(α+ 4)x− [2ab+ (ab+ 4)α]

x2 − (α+2
4

)
+

−2a(β + 4)x+ [2ab+ (ab+ 4)β]

x2 − (β+2
4

)

]
.

The Maclaurin series expansion of the function A−Bx
x2−C

is expressed in the form

A−Bx

x2 − C
=

∞∑
n=0

BC−n−1x2n+1 −
∞∑

n=0

AC−n−1x2n

Following the same order, the generating function C(x) can be expanded as

C(x) =
1

4(α− β)

[
−
∑∞

n=0

{
2a(α+ 4)

(
α+2
4

)−n−1
}
x2n+1∑∞

n=0 [2ab+ (ab+ 4)α]
(
α+2
4

)−n−1
x2n

]

+
1

4(α− β)

 ∑∞
n=0

{
2a(β + 4)

(
β+2
4

)−n−1
}
x2n+1

−
∑∞

n=0

{
[2ab+ (ab+ 4)β]

(
β+2
4

)−n−1
}
x2n

 ,
which can be expressed as

C(x) =
1

4(α− β)


∑∞

n=0

 −2a(α+ 4)
(

4
α+2

)n+1

2a(β + 4)
(

4
β+2

)n+1

x2n+1

+
∑∞

n=0

 [2ab+ (ab+ 4)α]
(

4
α+2

)n+1

− [2ab+ (ab+ 4)β]
(

4
β+2

)n+1

x2n


.

The above expression can be simplified as

C(x) =
1

4(α− β)

[
∞∑

n=0

{
2a

[
−(α+ 4) (β + 2)n+1

+(β + 4) (α+ 2)n+1

]}
x2n+1

]

− 1

4(α− β)

[
∞∑

n=0

{
2ab

[
− (α+ 2)n+1 + (β + 2)n+1]

+(ab+ 4)
[
−β (α+ 2)n+1 + α (β + 2)n+1] }x2n

]
.

By using the identities in Lemma (2), we obtain

C(x) =
a

(α− β)

[
∞∑

n=0

{
1

(ab)n+1

[
α2n+1(−ab+ 2α) + β2n+1(ab− 2β)

]}
x2n+1

]

+
1

4(α− β)

[
∞∑

n=0

{
2

(ab)n
{
α2n [(ab+ 4)α− α2]− β2n [(ab+ 4)β − β2]}}x2n] .
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Again using the Lemma (2), we have

C(x) =

∞∑
n=0

{
a

(ab)n+1

(
α2n+1 + β2n+1)}x2n+1 +

∞∑
n=0

{
1

(ab)n
(α2n + β2n)

}
x2n.

By the help of the parity function ε(n), the above expansion can be condensed into the form

C(x) =

∞∑
n=0

aε(n)

(ab)⌊
n+1
2 ⌋ (αn + βn)xn.

Hence by comparing the above with the generating function C(x) =
∞∑

n=0

Cnx
n, we the desired result

is obtained as

ĉn =
aϵ(n)

(ab)⌊
n+1
2 ⌋ (αn + βn) .

Theorem 2.3. The limit of every two consecutive terms of the bi-periodic Jacobsthal-Lucas sequence
is generalized as

lim
n→∞

ĉ2n+1

ĉ2n
=
α

b
, lim

n→∞

ĉ2n
ĉ2n−1

=
α

a
.

Proof. Taking into account that |β| < α and lim
n→∞

(
β
α

)n
= 0, we have

lim
n→∞

ĉ2n+1

ĉ2n
= lim

n→∞

a/(ab)⌊
2n+2

2 ⌋

1/(ab)⌊
2n+1

2 ⌋
α2n+1 + β2n+1

α2n + β2n
=

a

ab
lim

n→∞

1 +
(
β
α

)2n+1

1
α
+
(
β
α

)2n+1 1
β

=
α

b
.

The other proof can be done in a similar fashion. From this theorem we can conclude that the
bi-periodic Jacobsthal-Lucas sequence does not converge.

Theorem 2.4. For any given integer n, we have

ĉ−n = (−2)−nĉn.

Proof. By using Binet’s formula, it’s obtained that

ĉ−n =
aε(−n)

(ab)⌊
−n+1

2 ⌋ (1/αn + 1/βn) =
aε(n)

(ab)⌊
−n+1

2 ⌋
βn + αn

(−2ab)n

=
aε(n)

(ab)⌊
n+1
2 ⌋

βn + αn

(−2)n
= (−2)−nĉn

Theorem 2.5. Let n be any nonnegative integer, then we have

n∑
k=0

(
n
k

)
2n−kaε(k+1)(ab)⌊

k+1
2 ⌋ĉk = aĉ2n,

and
n∑

k=0

(
n
k

)
2n−kaε(k)(ab)⌊

k
2 ⌋ĉk+1 = ĉ2n+1.

7
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Proof. By using the Binet formula and Lemma (2), we get

n∑
k=0

(
n
k

)
2n−kaε(k+1)(ab)⌊

k+1
2 ⌋ĉk

=

n∑
k=0

(
n
k

)
2n−kaε(k+1)(ab)⌊

k+1
2 ⌋ aε(k)

(ab)⌊
k+1
2 ⌋

(
αk + βk

)
=

n

a
∑

k=0

(
n
k

)
αk2n−k +

n

a
∑

p=0

(
n
k

)
βk2n−k

= a(α+ 2)n + a(β + 2)n

= a

(
α2

ab

)n

+ a

(
β2

ab

)n

= ĉ2n

Similarly,

n∑
k=0

(
n
k

)
2n−kaε(k)(ab)⌊

k
2 ⌋ĉk+1

=

n∑
k=0

(
n
k

)
2n−kaε(k)(ab)⌊

k
2 ⌋ aϵ(k+1)

(ab)⌊
k+2
2 ⌋

(
αk+1 + βk+1

)
=

α

b

n∑
k=0

(
n
k

)
αk2n−k − β

b

n∑
p=0

(
n
k

)
βk2n−k

=
α

b
(α+ 2)n +

β

b
(β + 2)n

=
a

a

[
α

b

(
α2

ab

)n

+
β

b

(
β2

ab

)n]
= ĉ2n+1

Theorem 2.6 (Catalan Identity). For all integers n and r, the Catalan Identity is given by

Č =

(
b

a

)ε(n+r)

ĉn−r ĉn+r −
(
b

a

)ε(n)

ĉ2n =
(a
b

)ε(r) (α− β)2 (−2)n−r

a2
ȷ̂2r

Proof. By noting the identities below, the proof proceeds as follows;

ε(n+ r) +
⌊n− r

2

⌋
+
⌊n+ r

2

⌋
= n

ε(n+ r)−
⌊
n− r + 1

2

⌋
−
⌊
n+ r + 1

2

⌋
= −n

(
b

a

)ε(n+r)

ĉn−r ĉn+r =

(
b

a

)ε(n+r)(
αn−r + βn−r

a⌊
n−r
2 ⌋b⌊

n−r+1
2 ⌋

)(
αn+r + βn+r

a⌊
n+r
2 ⌋b⌊

n+r+1
2 ⌋

)

=
b
ε(n+r)−⌊n−r+1

2 ⌋−⌊n+r+1
2 ⌋

aε(n+r)+⌊n−r
2 ⌋+⌊n+r

2 ⌋
(
αn−r + βn−r) (αn+r + βn+r)

= (ab)
−n (

α2n + β2n + αn−rβn+r + αn+rβn−r) .

8
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Similarly,

ε(n) + 2
⌊n
2

⌋
= n, ε(n)− 2

⌊
n+ 1

2

⌋
= −n,

(
b

a

)ε(n)

ĉ2n =

(
b

a

)ε(n)
1

a2⌊
n
2 ⌋b2⌊

n+1
2 ⌋ (αn + βn)2

=
b
ε(n)−2⌊n+1

2 ⌋

aε(n)+2⌊n
2 ⌋

(αn + βn)2

= (ab)
−n (

α2n + β2n + 2 (αβ)n
)
.

Č = (ab)
−n [

α2n + β2n + αn−rβn+r + αn+rβn−r −
(
α2n + β2n + 2 (αβ)n

)]
= (ab)

−n [
αn−rβn+r + αn+rβn−r − 2 (αβ)n

]
= (ab)

−n

(αβ)n
[
βr

αr
+
αr

βr
− 2

]
=

(−2ab)n

(ab)n

[
β2r + α2r + 2αrβr

(−2ab)r

]
=

(−2)n−r

(ab)r
(
β2r + α2r + 2αrβ

)
=

(−2)n−r

(ab)r
(αr − βr)2

which completes the proof.

Theorem 2.7 (Cassini’s Property or Simpson Property). For any number n belonging to
the set of positive integers, we have(

b

a

)ε(n+1)

ĉn−1ĉn+1 −
(
b

a

)ε(n)

ĉ2n = (−2)n−1 (ab+ 8)

Proof. This is a special case of the Catalan Identity in which the value of r is 1. Therefore the
Cassini’ s Property can easily be proven by a mere substitution of r = 1 into the Catalan Identity.

Theorem 2.8 (D’ocagne’s Property). For any numbers m and n, belonging to the set of positive
integers, with m ≥ n, we have

aε(mn+m)b
ε(mn+n)

ĉm+1ĉn − a
ε(mn+n)

b
ε(mn+m)

ĉmĉn+1 = (−2)n(ab+ 8)ȷ̂m−n.

Proof. By using the following equalities, we proceed as follows:

ε(m) + ε(n+ 1)− 2ε(mn+m) = ε(m+ 1) + ε(n)− 2ε(mn+ n) = 1− ε(m− n), (5)

ε(m− n) = ε(mn+m) + ε(mn+ n), (6)

m+ n− ε(m− n)

2
=
⌊m
2

⌋
+

⌊
n+ 1

2

⌋
− ε(mn+ n), (7)

9
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m+ n− ε(m− n)

2
=

⌊
m+ 1

2

⌋
+
⌊n
2

⌋
− ε(mn+m). (8)

By using the extended Binet’s formula, (5), (6), (7), (8), it

ψ = aε(mn+m)bε(mn+n)ĉm+1ĉn

= aε(mn+m)bε(mn+n) a1−ε(m)

(ab)⌊
m
2 ⌋+1

a1−ε(n+1)

(ab)⌊
n+1
2 ⌋

(
αm+1 + βm+1) (αn + βn)

=
abε(mn+n)a1−ε(m)−ε(n+1)+ε(mn+m)

(ab)⌊
m
2 ⌋+⌊n+1

2 ⌋+1
(αm+n+1 + βm+n+1 + βm+1αn + αm+1βn)

=
abε(mn+n)a+ε(m−n)−ε(mn+m)

(ab)
m+n−ε(m−n)

2
+ε(mn+n)+1

(αm+n+1 + βm+n+1 + βm+1αn + αm+1βn)

=
a

(ab)
m+n−ε(m−n)

2
+1

[αm+n+1 + βm+n+1 + βm+1αn + αm+1βn]

φ = aε(mn+n)bε(mn+m)ĉmĉn+1

= aε(mn+n)bε(mn+m) a
1−ε(m+1)

(ab)⌊
m+1

2 ⌋
a1−ε(n)

(ab)⌊
n
2 ⌋+1

(
αn+1 + βn+1) (αm + βm)

=
abε(mn+m)a1−ε(m+1)−ε(n)+ε(mn+n)

(ab)⌊
m+1

2 ⌋+⌊n
2 ⌋+1

(
αn+1 + βn+1) (αm + βm)

=
abε(mn+m)a+ε(m−n)−ε(mn+n)

(ab)
m+n−ε(m−n)

2
+ε(mn+m)+1

[
αm+n+1 + βm+n+1 + αmβn+1 + αm+1βm]

=
a

(ab)
m+n−ε(m−n)

2
+1

[
αm+n+1 + βm+n+1 + βmαn+1 + αmβn+1]

From the above results, we obtain

ψ − φ =

(
a

(ab)
m+n−ε(m−n)

2
+1

)
(αmβn) (α− β)− (αmβn) (α− β)

=

(
a

(ab)
m+n−ε(m−n)

2
+1

)
(α− β)2 (αβ)n

[
αm−n − βm−n

]
α− β

=

(
(−2)na

(ab)
m−n−ε(m−n)

2
+1

)
(α− β)2

[
αm−n − βm−n

]
α− β

=

(
(−2)na

(ab)⌊
m−n

2 ⌋+1

)
(α− β)2

αm−n − βm−n

(α− β)

= (−2)naε(m−n)(ab+ 8)ȷ̂m−n.

So, the proof is completed.

Theorem 2.9. Let ab ̸= 1, then the sum of the first n elements of bi-periodic of Jacobsthal Lucas
sequence is given as

n−1∑
k=0

ĉk =
4ĉn−2 + 4ĉn−1 − ĉn − ĉn+1 − (ab+ 4) + 2 + 3a

1− ab

10



Uygun and Owusu; JAMCS, 34(5): 1-13, 2019; Article no.JAMCS.53359

Proof. Let n even. By using Binet formula for bi-periodic of Jacobsthal Lucas sequence, we get

n−1∑
k=0

ĉk =

n−2
2∑

k=0

ĉ2k +

n−2
2∑

k=0

ĉ2k+1

=

n−2
2∑

k=0

{
1

(ab)k

(
α2k + β2k

)
+

a

(ab)k+1

(
α2k+1 + β2k+1

)}

If we use the property of geometric series, we get

=

(
αn − (ab)

n
2

(ab)
n
2
−1 (α2 − ab)

+
βn − (ab)

n
2

(ab)
n
2
−1 (β2 − ab)

)

+a

(
αn+1 − α (ab)

n
2

(ab)
n
2 (α2 − ab)

+
βn+1 − β (ab)

n
2

(ab)
n
2 (β2 − ab)

)
After some algebraic operations we have

=
1

(1− ab) (ab)
n
2
+1

(
4a2b2(αn−2 + βn−2)− ab(αn + βn)

− (ab)
n
2 (α2 + β2) + 2 (ab)

n
2
+1

)
+

a

(1− ab) (ab)
n
2
+2

(
4a2b2(αn−1 + βn−1)− ab(αn+1 + βn+1) + 3 (ab)

n
2
+1 (α+ β)

)
=

4ĉn−2 + 4ĉn−1 − ĉn − ĉn+1 − (ab+ 4) + 2 + 3a

1− ab

If we make the similar operation for the odd elements of bi-periodic Jacobsthal Lucas sequence we
obtain

n−1∑
k=0

ĉk =

n−1
2∑

k=0

ĉ2k +

n−3
2∑

k=0

ĉ2k+1

=

n−1
2∑

k=0

1

(ab)k

(
α2k + β2k

)
+

n−3
2∑

k=0

a

(ab)k+1

(
α2k+1 + β2k+1

)
If we use the property of geometric series, we get

=

(
αn+1 − (ab)

n+1
2

(ab)
n−1
2 (α2 − ab)

+
βn+1 − (ab)

n+1
2

(ab)
n−1
2 (β2 − ab)

)

+

(
αn − α (ab)

n−1
2

(ab)
n−1
2 (α2 − ab)

+
βn − β (ab)

n−1
2

(ab)
n−1
2 (β2 − ab)

)

After some algebraic operations we have

=
1

(1− ab) (ab)
n+3
2

(
4a2b2(αn−1 + βn−1)− ab(αn+1 + βn+1)

− (ab)
n+1
2 (α2 + β2) + 2 (ab)

n+3
2

)
+

a

(1− ab) (ab)
n+3
2

(
4a2b2(αn−2 + βn−2)− ab(αn + βn) + 3 (ab)

n+1
2 (α+ β)

)
=

4ĉn−2 + 4ĉn−1 − ĉn − ĉn+1 − (ab+ 4) + 2 + 3a

1− ab

11
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If we combine the results we get the desired result.

3 Conclusions

In this study we define a new generalization of Jacobsthal Lucas sequence which is called bi-
periodic Jacobsthal Lucas sequence and find basic properties of the sequences such as Binet formula,
generating function, the sum of the first n elements, D’ocagne, Catalan, Cassini.
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