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Abstract 
 

The paper provides five tests of data normality at different sample sizes. The tests are the Shapiro-Wilk 
(SW) test, Anderson-Darling (AD) test, Kolmogorov-Smirnov (KS) test, Ryan-Joiner (RJ) test, and 
Jarque-Bera (JB) test. These tests were used to test for normality for two secondary data sets with sample 
size (155) for large and (40) for small; and then test the simulated scenario with standard normal “N(0,1)” 
data sets; where the large samples of sizes (150, 140, 130, 130, 110 and 100) and small samples of sizes 
(40. 35, 30, 25, 20, 15 and 10) are considered at two levels of significance (5% and 10%). However, the 
aim of this paper is to detect and compare the performance of the different normality tests considered. 
The normality test results shows Kolmogorov-Smirnov (KS) test is a most powerful test than other tests 
since it detect the simulated large sample data sets do not follow a normal distribution at 5%, while for 
small sample sizes at 5% level of significance; the results showed the Jarque-Bera (JB) test is a most 
powerful test than other tests since it detects that the simulated small sample data do not follow a normal 
distribution at 5%. This paper recommended JB test for normality test when the sample size is small and 
KS test when the sample size is large at 5% level of significance. 
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Keywords: Normality test; differenced; simulated scenario (samples); level of significance; large and small 
sample (observation). 

 

1 Introduction 
 
This study compared five tests of data normality check, where these tests are performed to examine whether 
or not the observations considered follow a normal distribution. When a variable is normally distributed, 
then parametric statistics are used based on this assumption. More often large sample size is required to 
detect departures from normality. Only extreme types of non-normality can be detected with samples less 
than fifty observations because generally normality test has small statistical power (probability of detecting 
non-normal data) except the sample sizes are at least over 100. Statistical errors are common in scientific 
literature, and about 50% of the published articles have at least one error [1]. Many of the statistical 
procedures including correlation, regression, t-tests, and analysis of variance, namely parametric tests, are 
based on the assumption that the data follows a normal distribution or a Gaussian distribution; that is, it is 
assumed that the populations from which the samples are taken are normally distributed [2,3]. The 
assumption of normality is especially critical when constructing reference intervals for variables [4]. 
Normality and other assumptions should be taken seriously, for when these assumptions do not hold, it is 
impossible to draw accurate and reliable conclusions about reality [5]. 
 
With large enough sample sizes greater than thirty, the violation of the normality assumption should not 
cause major problems [6]; this implies that parametric procedures can be used, even when the data are not 
normally distributed [7]. If we have samples consisting of hundreds of observations, the distribution of the 
data can be ignored [3]. It is important to ascertain whether data show a serious deviation from normality 
[7]. 
 
The aim of this paperwork is to compare the performance of some of the methods for detecting normality. 
The objectives are: (1) To test for normality using five different statistical tests. (2) Ascertain the tests that 
were able to detect non-normality at different levels of Significance [5% and 10%] for both large and small 
samples. 
 

2 Methods 
 
This section includes the definitions and some terms associated with the analysis. The methods adopted in 
this study are some tests for normality checking. This section provides details of the five normality tests used 
in the study. 
 

2.1 Shapiro-Wilk (W or SW Test) 
 
The basic approach used in the Shapiro-Wilk (SW) test for normality is as follows: 
 

1) Rearrange the data in ascending order so that 1 ... nx x  . 

2) Calculate SS as follows: 
 

 
2

1

n

i
i

SS x x


                                                                                                                            (1) 

 
3) If n is even, let m = n/2, while if n is odd let m = (n–1)/2 
4) Calculate b as follows, taking the ai weights from Table 1 (based on the value of n) in the Shapiro-

Wilk Tables. Note that if n is odd, the median data value is not used in the calculation of b. 
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1
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( )
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i n i i
i

b a x x 


                                                                                                                      (2) 

 
5) Calculate the test statistic 

 
W = b2 ⁄ SS                                                                                                                                          (3) 

 
6) Find the value in Table 2 of the Shapiro-Wilk Tables (for a given value of n) that is closest to W, 

interpolating if necessary. This is the p-value for the test. 
 

2.2 Jarque – Bera (JB) test 
 
It is a better goodness-of-fit test that is used to test whether sample data has the skewness and kurtosis 
matching a normal distribution; which its statistic has a chi-square distribution with two degrees of freedom

 2 2
. 

 
Hypothesis: 
 
H0: the data is normally distributed 
 
against  
 
H1: the data is not normally distributed 
 

where  
 

Skewness:  

 
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                                                                                                           (4) 

 

Kurtosis: 

 
4
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


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                                                                                                          (5) 

 
Then, 
 

  
2 2

21 2 2
6 24

JB n
 


 

   
 

                                                                                                      (6) 

 

where  
 

d  is the difference in each observation. 
n is the sample size. 
s is the standard deviation. 

1 is the skewness. 

2 is the kurtosis. 
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Decision rule; we reject H0, if JB >  2 2 , otherwise accept H0 

 
Equation (6) was used to obtain the test statistic. We used the Jarque- Bera (JB) Test to test our data for 
normality. In Statistics, the JB Test is goodness of–fit test of whether sample data have the skewness and 
kurtosis matching a normal distribution. 
 
Hypothesis: 
 
 H0: Data follows a standard normal distribution; against 
 H1: Data does not follow a standard normal distribution.          

Decision rule; we reject H0, if JB >
 22

, otherwise accept H0 

 

2.3 Kolmogorov-Smirnov test for normality (KS Test) 
 
Definition 1: Let x1,…,xn be an ordered sample with x1 ≤ … ≤ xn and define Sn(x) as follows: 
 

 
1

1

0,

/ ,

1,

n k k

n

x x

S x k n x x x

x x






  
 

                                                                                             (7) 

 
Now suppose that the sample comes from a population with cumulative distribution function F(x) and define 
Dn as follows: 
 

max ( ) ( )n n
x

D F x S x                                                                                                             (8) 

 
Observation: It can be shown that Dn doesn’t depend on F. Since Sn(x) depends on the sample chosen, Dn is 
a random variable. Our objective is to use Dn as a way of estimating F(x). 
 
The distribution of Dn will be calculated using statistical software, but now the important aspect of this 
distribution are the critical values. 
 
If Dn,α is the critical value from the table, then P(Dn ≤ Dn,α) = 1 – α. Dn can be used to test the hypothesis that 
a random sample came from a population with a specific distribution function F(x). If 
 

,max ( ) ( )n n
x

F x S x D                                                                                                            (9) 

 
Then the sample data is a good fit with F(x). Also from the definition of Dn given above, it follows that 
 

   
 
 
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,
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P D D P F x S x D

P S x D F x S x D for all x

P F x S x D for all x

 

 



     

    

  

                (10) 

 
Thus Sn(x) ± Dn,α provides a confidence interval for F(x). 
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This test for normality is based on the maximum difference between the observed distribution and expected 
cumulative-normal distribution. Since it uses the sample mean and standard deviation to calculate the 
expected normal distribution, the Lilliefors’ adjustment is used. The smaller the maximum difference the 
more likely that the distribution is normal. 
 
This test has been shown to be less powerful than the other tests in most situations. It is included because of 
its historical popularity. 
 

2.4 Anderson Darling (AD) test 
 
Measures the area between the fitted line (based on chosen distribution) and the nonparametric step function 
(based on the plot points). The statistic is a squared distance that is weighted more heavily in the tails of the 
distribution. Smaller Anderson-Darling values indicate that the distribution fits the data better. 
 
The Anderson-Darling normality test is defined as: 
 
H0: The data follow a normal distribution; against  
H1: The data do not follow a normal distribution 
 
Test Statistic: The Anderson-Darling test statistic is defined as 
 

       2
1

1

1
( ) 2 1 ln ln 1

N

i N i
i

AD N i F Y F Y
N

 


 
     

 
                                          (11) 

 
where: 
 
F is the cumulative distribution function of the normal distribution Yi are the ordered observations and N is 
the sample size. 
 

2.5 Ryan-Joiner (RJ) test 
 
The Ryan-Joiner test provides a correlation coefficient of the ordered observations (Yi), which indicates the 
correlation between your data and the normal scores of your data. If the correlation coefficient is close to 1, 
the data fall close to the normal probability plot. If it falls below the appropriate critical value, we will reject 
the null hypothesis of normality. 
 
The correlation coefficient is calculated as: 
 

1

2

1

( 1)

N

i i
i

N

i
i

Y b

RJ

S N b













                                                                                                              (12) 

 
where: 
 
Yi are ordered observations 
bi = normal scores of your ordered data 
S2 = sample variance. 
 
In this work, the normality tests were applied to a large sample (n=155) with/without outliers and small 
sample (n=40) with/without outliers. First, identify the outliers, then went ahead to treat the outliers using 
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the mean imputation and range test technique; then applied the normality tests again. In addition, we also 
transformed the data sets to standard normal and went ahead to confirm normality with these tests 
[8,9,10,11]. 
 
Next, comparison between the different normality tests was done of the transformed data sets (or 
differencing data set), the data set with Outliers (where detection of Outliers on the data set was done using 
Range test) and the data set without Outliers (treated data set was obtained using imputation technique called 
mean imputation method. 
 
Differencing (Diff): refers to the transformation of time series data in order to achieve stationarity; It 
eliminates trend and seasonality which stabilizes the mean of the time series data. Scientifically, first-order 

differencing is expressed as 1 tttt yyYY
. A stationary time series does not depend on time. 

Intermittently, second-order differencing is expressed as 
  21

22 21   tttttt YYYYBYY
and 

removes quadratic trends [12]. This process loses one a datum at each time is its disadvantage. Much natural 
time series are non–stationary. Box and Jenkins [13] proposed that differencing up to an appropriate order 

renders the data stationary for a non–stationary time series ( tX ). 
 

I) Outliers Detection: Outliers is detected with the use of range test in the series. Range Test: 
compute the overall mean and standard deviation of the data set. Then, subtract the mean from each 
observation values and divide by standard deviation, that is 

 

i
T

x x
R




                                                                                                                               (13) 

 

where: x – Extreme values, X  - Overall Mean and ̂ - Overall standard deviation. 
 
An extreme value (x) is an outlier if 
 

( )
3

abs x X




                                                                                                                (14) 

 
II) Outliers Treatment (Mean Imputation Method): 

 
The detected outliers were replace using the Mean imputation technique. This technique suggested 
that the outlier values are replaced with the mean data set (or Overall Mean). 

 

1

n

i
i

x

x
n



                                                                                                                             (15) 

 
Furthermore, a standard normal form with additive errors term of the data sets was obtained, then the 
different normality tests considered were done and compared. In addition, to compare these tests base on 
larges and sample sizes. We considered a simulation scenario for normality “N(0,1)” where sample sizes are 
150, 140, 130, 130, 110 and 100 for large samples scenario; then the sample sizes are 40. 35, 30, 25, 20, 15 
and 10 for small samples scenario. We used the normal data sets simulated to check how many times the 
hypothesis is rejected in each case. 
 
 



 
 
 

Biu et al.; AJPAS, 5(4): 1-20, 2019; Article no.AJPAS.53651 
 
 
 

7 
 
 

3 Illustrations and Results 
 
The common null hypothesis for these tests is H0: data follow a normal distribution. If the p-value of the test 

is less than the   level used, reject H0. In this section, two data sets were obtained to compare the 
performance of the five normality tests considered in the paper [Large sample (150) and a small sample 
(40)]. The first data set is with outliers (which was detected by range test and treated by mean imputation 
technique) and the second data set is without outliers. 
 

3.1 Secondary data sets, illustrations and results 
 
Illustration 1: Descriptive statistics and Normality tests for first data 
 
Descriptive Statistics: 
 

 
 

Table 3.1. Normality test of monthly revenue generated data of the Nigeria Ports Authority (NPA), 
Rivers Ports. Nigeria (2002 to 2014) 

 
Normality 
test 

Diff(NPA) 
with outlier 

Decision at 
5% and 10% 

Diff(NPA) 
without 
outlier (after 
applied range 
test) 

Diff(NPA) 
without 
outlier 
N(0,1) 

Diff(NPA) 
with 
additive 
error 

Decision at 
5% and 
10% 

SW Test 0.955 
(0.000**) 

Both rejected 0.995 
(0.879) 

0.995 
(0.879) 

0.996 
(0.943) 

Accepted at 
both levels  

AD Test 1.140 
(0.005**) 

Both rejected 0.263 
(0.696) 

0.263 
(0.696) 

0.129 
(0.983) 

Accepted at 
both levels 

KS Test 0.066 
(0.095*) 

Only rejected 
at 10% 

0.043 
(>0.150) 

0.043 
(>0.150) 

0.032 
(0.200) 

Accepted at 
both levels  

RJ Test 0.974 
(<0.010**) 

Both rejected 0.998 
(>0.100) 

0.998 
(>0.100) 

0.998 
(>0.100) 

Accepted at 
both levels  

JB Test 64.532** Both rejected 0.295 0.268 0.073 Accepted at 
both levels  

The p-values are in parenthesis. If p-value of the test is less than the   level (**=sig. at 5% and *= sig. at 10%), reject 

H0 (or reject Normality) for SW, AD, KS, and RJ; while JB calculated greater than the  2 2   level [5% (5.99) 

and 10% (4.61)], reject H0 

 
Result: The normality test results in Table 3.1 show that four of the tests rejected H0 for both levels of 
significance (5% and 10%) except the Kolmogorov-Smirnov Test (KS Test); which fail reject at 5% 
[Diff(NPA) with Outlier]. The data sets of Diff(NPA) without Outlier, Diff(NPA) without Outlier N(0,1) and 
Diff(NPA) with Additive error show that the different normality tests considered do not reject H0 for both 
levels of significance (5% and 10%). 
 
Illustration 2: Descriptive statistics and Normality tests for the second data set 
 
Descriptive Statistics: 
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Table 3.2. Normality test of Average Monthly Income (AMI) of respondents (naira) whose household 

utilized primary health care services two or more times in the last month [14] 
 

Normality test Average Monthly 
Income (AMI) 

Decision at 5% 
and 10% 

Diff(AMI)  Diff(AMI) 
N(0,1) 

Decision at 5% 
and 10% 

SW Test 0.934 (0.025**) Both rejected 0.982 
(0.782) 

0.982 
(0.782) 

Accepted at 
both levels  

AD Test 0.840 (0.028**) Both rejected 0.202 
(0.869) 

0.202 
(0.869) 

Accepted at 
both levels  

KS Test 0.165 (<0.010**) Both rejected 0.065 
(>0.150) 

0.065 
(>0.150) 

Accepted at 
both levels  

RJ Test 0.977 (>0.100) Accepted at both 
levels 

0.998 
(<0.100) 

0.998 
(<0.100) 

Accepted at 
both levels  

JB Test 5.77* Only rejected at 
10% 

2.99 2.99 Accepted at 
both levels  

The p-values are in parenthesis. If p-value of the test is less than the   level (**=sig. at 5% and *= sig. at 10%), reject 

H0 (or reject Normality) for SW, AD, KS, and RJ; while JB calculated greater than the  2 2   level [5% (5.99) 

and 10% (4.61)], reject H0 

 
Result: The normality test results in Table 3.2 shows that three of the tests rejected H0 for both levels of 
significance (5% and 10%) except Jarque–Bera (JB) test which fails reject at 5%  and Ryan-Joiner tests 
which fail to reject at both levels 5% and 10%) for the actual average monthly income (AMI) data. The 
Diff(AMI) data sets and Diff(AMI) standard normal form of N(0,1) shows that the different normality tests 
considered rejected H0 for both levels of significance (5% and 10%). 
 

3.2 Primary data sets, illustrations and results 
 
Similarly, this section used two simulated scenario with standard normal “N(0,1)” data sets; where the large 
samples of sizes (150, 140, 130, 130, 110 and 100) and small samples of sizes (40. 35, 30, 25, 20, 15 and 10) 
are considered. 
 
Illustration 3: Descriptive statistics and Normality tests for the first simulated data set 
 
Descriptive Statistics: N=150, N=140, N=130, N=120, N=110, N=100 
 

 
 
 

Table 3.3. Normality test of simulated large sample sizes 
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Normality 
test 

Large samples of sizes 
N=150 N=140 N=130 N=120 N=100 N=100 

SW Test 0.985 
(0.336) 

0.992 
(0.792) 

0.986 
(0.371) 

0.982 
(0.180) 

0.992 
(0.785) 

0.991 
(0.755) 

AD Test 0.621 
(0.104) 

0.401 
(0.356) 

0.211 
(0.855) 

0.709 
(0.063*) 

0.270 
(0.672) 

0.181 
(0.912) 

KS Test 0.082 
(0.097*) 

0.051 
(0.200) 

0.051 
(0.200) 

0.099 
(0.017**) 

0.053 
(0.200) 

0.040 
(0.200) 

RJ Test 0.994 
(>0.100) 

0.996 
(>0.100) 

0.996 
(>0.100) 

0.993 
(>0.100) 

0.995 
(>0.100) 

0.996 
(>0.100) 

JB Test 2.783 1.680 0.020 0.890 1.294 0.737 

The p-values are in parenthesis. If p-value of the test is less than the   level (**=sig. at 5% and *= sig. at 10%), reject 

H0; while JB calculated greater than the  2 2   level [5% (5.99) and 10% (4.61)], reject H0 

 
Result: From Table 3.3, the AD test rejected Ho at 10% for sample size 120, while the KS test rejected Ho at 
5% for sample size 120 and rejected Ho at 10% for sample size 150. However, the other tests (SW, RJ and 
JB) do not reject Ho at both significance levels. 
 
Illustration 4: Descriptive statistics and Normality tests for the second simulated data set 
 
Descriptive Statistics: n=40, n=35, n=30, n=25, n=20, n=15, n=10 
 

 
 

Table 3.4. Normality test of simulated small sample sizes 
 

Normality 
test 

Small samples of sizes 
n=40 n=35 n=30 n=25 n=20 n=15 n=10 

SW Test 0.957 
(0.751) 

0.853 
(0.063*) 

0.960 
(0.784) 

0.968 
(0.868) 

0.940 
(0.550) 

0.957 
(0.753) 

0.957 
(0.747) 

AD Test 0.725 
(0.054*) 

0.437 
(0.280) 

0.340 
(0.474) 

0.281 
(0.611) 

0.311 
(0.523) 

0.178 
(0.902) 

0.204 
(0.824) 

KS Test 0.202 
(0.200) 

0.193 
(0.200) 

0.131 
(0.200) 

0.119 
(0.200) 

0.156 
(0.200) 

0.130 
(0.200) 

0.120 
(0.200) 

RJ Test 0.971 
(0.050*) 

0.969 
(0.059*) 

0.984 
(>0.100) 

0.986 
(>0.100) 

0.978 
(>0.100) 

0.985 
(>0.100) 

0.978 
(>0.100) 

JB Test 5.297* 8.743** 1.418 0.133 0.594 0.363 0.753 

The p-values are in parenthesis. If p-value of the test is less than the   level (**=sig. at 5% and *= sig. at 10%), reject 

H0; while JB calculated greater than the  2 2   level [5% (5.99) and 10% (4.61)], reject H0 

 
Result: From Table 3.4, SW test rejected Ho at 10% for sample size 35, AD test rejected Ho at 10% for 
sample size 40, RJ test rejected Ho at 10% for sample sizes 40 and 35, while JB test rejected Ho at 10% for 
sample size 40 and at 5% for sample size 35. KS test rejected Ho at 5% for sample size 120 and rejected Ho 
at 10% for sample size 150. However, only the KS test does not reject Ho at both significance levels. 
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3.3 Discussion 
 
Illustrate one results showed only the KS test suggested that the data set follow a standard normal 
distribution at 5% while other tests contradicted (i.e. large sample data set n=155). In illustrate two results, 
RJ and JB tests show that the data set to follow a standard normal distribution at 5% while others 
contradicted (small sample data set n=40). Illustrate three results showed SW, RJ and JB tests suggested that 
the data set follow a standard normal distribution at both level of significance (5% and 10%) while the other 
two (AD and KS) contradicted. The AD test shows that it does not follow a standard normal distribution 
when the sample size (n) is120 at 10%. Similarly, the KS test also shows that it does not follow a standard 
normal distribution when the sample size (n) is150 at 10% and when the sample size (n) is120 at 5%. 
Finally, illustrate four results, only the KS test suggested that the data set follows a standard normal at both 
level of significance (5% and 10%) while other tests contradicted. SW test shows that does not follow a 
standard normal distribution when the sample size (n) is 35 at 10%; also AD test shows that does not follow 
a standard normal distribution when the sample size (n) is 40 at 10%; RJ test shows that does not follow a 
standard normal distribution when the sample sizes (n) are 40 and 35 at 10%; while JB test shows that does 
not follow a standard normal distribution, when the sample size (n) is 40 at 10% and when the sample size 
(n) is 35 at 5%. 
 
Note: for large sample sizes at a 5% level of significance; only the KS test detects that the simulated data do 
not follow a normal distribution, while for small sample sizes at a 5% level of significance only the JB test 
detects that the data do not follow a normal distribution. 
 

4 Conclusion 
 
This paper compared five different normality tests, using four illustrations (Two secondary and primary data 
sets). These tests were applied to different data sets; large sample with outliers, small sample without 
outliers, simulated large sample sizes (150, 140, 130, 130, 110 and 100) and simulated small sample sizes 
(40. 35, 30, 25, 20, 15 and 10). The various tests were done at 5% and 10% level of significance. The results 
show that for the large sample sizes at 5% level of significance; Kolmogorov-Smirnov (KS) test is a most 
powerful test than other tests since it detects the simulated large sample data sets do not follow a normal 
distribution at 5%, while for small sample sizes at 5% level of significance; the results showed the Jarque-
Bera (JB) test is a most powerful test than other tests since it detects that the simulated small sample data do 
not follow a normal distribution at 5%. 
 
This paper recommended the JB test for normality tests when the sample size is small and the KS test when 
the sample size is large at a 5% level of significance. 
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 Kolmogorov-Smirnova Shapiro-Wilk 
 Statistic Df Sig. Statistic Df Sig. 
Diff(NPA) with Outlier .066 155 .095 .956 155 .000 

a. Lilliefors Significance Correction 
 

 
 

 
 

Tests of normality 
 

 Kolmogorov-Smirnova Shapiro-Wilk 
 Statistic Df Sig. Statistic df Sig. 
Diff(NPA) without Outlier .043 155 .200* .995 155 .879 

a. Lilliefors Significance Correction 
*. This is a lower bound of the true significance. 
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Tests of normality 
 

 Kolmogorov-Smirnova Shapiro-Wilk 
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Diff(NPA) without Outlier N(0,1) .043 155 .200* .995 155 .879 

a. Lilliefors Significance Correction 
*. This is a lower bound of the true significance. 
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Tests of normality 
 

 Kolmogorov-Smirnova Shapiro-Wilk 
 Statistic df Sig. Statistic Df Sig. 
Diff(AMI) .078 39 .200* .982 39 .782 
AMI .172 39 .005 .934 39 .025 

a. Lilliefors Significance Correction 
*. This is a lower bound of the true significance 
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Tests of normality 
 

 Kolmogorov-Smirnova Shapiro-Wilk 
Statistic Df Sig. Statistic df Sig. 

N=150 .082 100 .097 .985 100 .336 
N=140 .051 100 .200* .992 100 .792 
N=130 .051 100 .200* .986 100 .371 
N=120 .099 100 .017 .982 100 .180 
N=110 .053 100 .200* .992 100 .785 
N=100 .040 100 .200* .991 100 .765 

*. This is a lower bound of the true significance. 
a. Lilliefors Significance Correction 
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Tests of normality 
 

 Kolmogorov-Smirnova Shapiro-Wilk 
Statistic Df Sig. Statistic df Sig. 

n=40 .202 10 .200* .957 10 .751 
n=35 .193 10 .200* .853 10 .063 
n=30 .131 10 .200* .960 10 .784 
n=25 .119 10 .200* .968 10 .868 
n=20 .156 10 .200* .940 10 .550 
n=15 .130 10 .200* .957 10 .753 
n=10 .120 10 .200* .957 10 .747 

*. This is a lower bound of the true significance. 
a. Lilliefors Significance Correction 
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