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Abstract 
 

High quality solar radiation data is required for the appropriate monitoring and analysis of the Earth’s 
climate system as well as efficient planning and operation of solar energy systems. However, well 
maintained radiation measurements are rare in many regions of the world. Therefore, satellite-derived 
radiation estimates are an alternative to these scarce solar radiation measurements from the weather 
stations. Satellite estimates of solar radiation have an advantage over solar radiation measurements from 
weather stations because of their high spatial and temporal resolutions. These satellite radiation estimates 
at approximately 5-6 Km resolution derived from geostationary Meteosat satellites are available through 
the EUMETSAT Satellite Application Facilities (SAFs). CM-SAF (SAF on Climate Monitoring) 
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provides consistent dataset of hourly, daily and monthly solar radiation from 1983 to 2013. In this study, 
we examined the potential of using satellite estimates of solar radiation to fill in the data gaps in records 
from the weather stations as well as the areas where radiation data is not available. The analysis carried 
out showed that the satellite data had fewer missing values than the ground data, and that they are both 
similar in distribution. The average correlation between the two data sets was found to be 0.71 for both 
monthly and daily analysis. However, the month of September showed a very low correlation of 0.21. 
Mean percentage error, mean bias error and mean absolute deviation were found to be 2.46, 18.84, 50.32 
and 3.08, 559.87, 1135.93 for daily and monthly analysis, respectively. 
 
The solar radiation distribution in Dodoma was found to follow Weibull distribution throughout the year. 
 

 
Keywords: Weibull Distribution; CM-SAF; EUMETSAT; geostationary �������� satellites. 
 

1 Introduction 
 
Most of the biochemical processes that occur on the surface of the earth, such as photosynthesis and plant 
development, derive their energy from the sun [1]. Solar radiation is also important in determining the 
performance and monitoring the working of solar devices such as solar furnaces, solar collectors, and 
photovoltaics. It is therefore important to get solar radiation data of high quality at every place where these 
applications are applied for appropriate monitoring. 
 
Solar radiation data are important for many application fields such as ecology, biodiversity, hydrology, 
agriculture, meteorology, and climatology. For example, 
 
1. Hydrology: Most of the hydrological models require weather variables such as precipitation, maxi-mum 
and minimum temperatures and solar radiation [2]. 
 

2. Agriculture: Farmers are faced with a challenge of choosing which crop to plant in a given area. This is 
normally influenced by a number of factors such as soil moisture of the area and plant’s rate of 
evapotranspiration. Soil moisture depends on the rate of evaporation in the soil, which to a large extent, 
depends on solar radiation. To understand this basic physiology of crop growth and development, many crop 
models have been developed [3]. These models are of great importance in quantifying the environmental 
limits to specific crop production at a given area. They are also applicable in prediction of crop yields. 
According to [4], solar radiation is an important factor in crop growth in Europe and other areas of the world 
( Fig. 1:1). This justifies the importance of accurate measurement of radiation data. 
 

 
 

Fig. 1.1. Geographic distribution of potential climatic constraints, temperature, radiation and water, 
to plant growth derived from long-term climate statistics [4] 
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In the recent past, there has been a lot of work on examining the feasibility of solar cooking and solar water 
purification. Development of these technologies requires accurate information on hourly solar radiation as 
this will help in knowing when to use these appliances. The knowledge of the hourly solar radiation is also 
vital in determining how much of the energy can be stored for use when the sun goes down. According to 
[5], “it is anticipated that solar cooking technology will be demanded by a huge group of people in the near 
future because of its outstanding features”. Therefore, accurate measurement of solar radiation in most parts 
of the world will be of great importance to help in designing the solar cooker and solar water purifiers that 
can be can be used even in areas that receive low solar irradiance. 
 
However, location specific and accurate solar radiation data is still a great challenge for most of the African 
countries, even though the problem has been discussed at many local and global meetings including the 
World Meteorological Organization (WMO) Regional Association (Africa) sessions that are held every four 
years [6]. This is mainly because there are few weather stations in Africa. On 6th Nov, 2006, Michel Jarraud 
said in a press conference that was held in Nairobi, Kenya, that Africa still needs approximately 200 
automatic weather stations as a step towards rescuing historical data and also improving capacity building on 
climate and weather reporting. According to Medany et al . [7], there are 1152 World Weather Watch 
(WWW) stations in Africa, giving a station density of 1 station per 26,000��� which is still 8 times below 
the minimum recommended level by WMO. In the working paper 3 of United Nations Economic 
Commission for African Climate Policy Centre [8], it is documented that the shortage of data in Africa is 
exacerbated by the uneven distribution of available weather stations leaving large areas unmonitored. 
 
As a way to reduce the problem of insufficient climatic data in Africa, United Nations Development 
programme rolled out a number of support programs that encourages climate resilient economic 
development in Africa (CIRDA) [9]. The main component of these programs is to provide credible and 
appropriate information on both weather and climate to help in decision making in most of the sectors that 
require these data [9]. To achieve this, Trans-African Hydro-meteorological Observatory (TAHMO) has 
been commissioned with the task of installing 20,000 on-the-ground automatic stations across Africa. These 
stations are to provide rainfall, temperature, and other critical data at high temporal resolution, which 
TAHMO plans to make freely available in their website. TAHMO is currently piloting this in several parts 
of Chad, Kenya, DRC, Uganda, among others [10]. 
 

 
 

Fig. 1.2. Figure showing a weather Station installed at Homabay Kenya 
 

Trans-African Hydro meteorological Observatory (TAHMO [10]) has the task of installing 20,000 stations 
in Africa to help solve the problem of insufficient climatic data in the continent. 
 
In the absence of solar radiation measurements, a number of methods have been developed to derive 
estimates of solar radiation for places where it is not measured directly. The simplest of these methods is 
assigning the measured values from the nearest station to these places [11] or using spatial interpolation 
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methods [12]. Solar radiation, at times is also estimated using other meteorological observations that are 
available, such as sunshine duration, cloud cover and air temperature using empirical models [13]. The 
estimated radiation calculated from these models varies in accuracy depending on variables used [14]. The 
model that uses the sunshine duration has been found to be more accurate, since it gives a measure of the 
time per day of direct solar radiation. But since the number of weather stations is low, solar radiation data 
recorded or estimated may not be enough to create a time series of solar radiation that has a high spatial 
resolution [15]. Thus, estimated solar radiation data from sources that provide spatially continuous 
information at high resolution such as data provided by the satellite have to be considered to supplement the 
station-specific estimates. 
 
Satellite data on radiation provides continuous estimates of these radiation data with a very high spatial and 
temporal resolution of 0.05� ×  0.05� and 30 min, respectively, for over 30 years. These estimates from the 
satellite data are therefore worth investigating to see if they correlate well with ground truth, and hence can 
be used to fill the large data gaps. 
 

2 Solar Radiation Data 
 
Data as well as preparation of the data used in this work is presented here. 
 

2.1 Description of the data 
 
2.1.1 Satellite data on radiation 
 
The data set that was used is called the Surface Solar Radiation Data Set-Heliosat  (SARAH). It is a 
collection of satellite records of the solar surface irradiance (SIS), the surface direct normalized irradiance 
(DNI) and the effective cloud albedo (CAL) [16]. These records are available as hourly, monthly and yearly 
averages from 1983 −  01 to 2013 − 12, which have started to change as more recent data are being added 
to the data base, with a spatial resolution of 0.05� ×  0.05� and covering a region of ±65�  longitude and 
±65� latitude [16]. 
 
The SARAH data are derived from the Meteosat  Visible and Infrared Imager (MVIRI) and Spanning 
Enhanced Visible and Infrared Imager (SEVIRI) instruments on the geostationary Meteosat satellites [17]. 
This is called the Heliosat Method. 
 
The first step in this method is to retrieve CAL by using the normalized relation between all sky and clear 
sky refection in the visible channel of the Meteosat instruments. CAL is then used to derive the cloud index 
(a measure for the impact of clouds on the clear-sky irradiance. The clear - sky irradiance is calculated using 
the all sky model SPECMAGIC [18]). The combination of cloud index and clear sky irradiance gives SIS. 
The Surface Direct Irradiance (���) is then derived using the diffuse model of Skartveit et al., [19] and the 
cloud index. The direct normalized irradiance (���) is derived from normalization of ��� with the cosine of 
the solar zenith angle (���): 
 

According to Mueller et al. [20], 
 

��� =
���

���(���)
 ,                                                                     (2.1.1) 

 

Effective Cloud Albedo (CAL) is the normalized difference between the reflected irradiance for all sky and 
reflected irradiance for clear sky. It is dimensionless. CAL is a measure of the effect of cloud on the Earth’s 
solar radiation budget, since it measures the cooling effect in the solar spectrum caused by clouds. 
 
According to Mueller et al. [20], 
 

��� =
�����

��������
,                                                      (2.1.2) 



where, � is the observed reflection for each pixel and time, 

maximum reflection determined by the 
region. From Posselt et al. [21], the monthly, daily and hourly averages of 
 

������� =
�

�.
(∑ ����

�
��� ) 

 
where � is the index of the slots per hour for hourly average, index of hourly 
for daily means for monthly mean calculations. 
 
Surface Incoming Solar Radiation (SIS)
 
surface, expressed in ����. According to Mueller et al. [22], it is calculated 
 

 
where SIS is the solar surface irradiance, and 
 

 
where SISDA is daily average of SIS, SIS
 
SIS for satellite image �, �������

 is the calculated clear sky

images available during the day. 
 

 
Direct Normalized Irradiance. This is 
direction. It is expressed in ����. In sunny regions or during the summer, it accounts for 
the total radiation.  
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is the observed reflection for each pixel and time, ���. 
is the clear sky reflection and 

maximum reflection determined by the 95% percentile of all reflection values at local noon in a target 
et al. [21], the monthly, daily and hourly averages of ��� are calculated as

)                                              

is the index of the slots per hour for hourly average, index of hourly means for daily means, index 
for daily means for monthly mean calculations.  

Surface Incoming Solar Radiation (SIS). This is the solar radiation flux on a horizontal Earth 

. According to Mueller et al. [22], it is calculated from CAL as; 

                  

is the solar surface irradiance, and SISCLS is clear sky irradiance. The SIS daily mean is

    

SISCLSDA is the daily averaged SIS is for clear sky, ����  calculated 

is the calculated clear sky, ��� for image � and � is the total number of 

This is the radiation from the Sun directly to the Earth. It has a fixed 
. In sunny regions or during the summer, it accounts for 70
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is the clear sky reflection and ���� is the 

percentile of all reflection values at local noon in a target 
are calculated as 

                                  (2.1.3) 

means for daily means, index 

This is the solar radiation flux on a horizontal Earth  

                    (2.1.4) 

daily mean is 

calculated  

is the total number of 

 

the radiation from the Sun directly to the Earth. It has a fixed 
70% − 80% of 

(2.1.5) 



Fig. 2.1 and Fig. 2.2 shows examples of the average SIS and DNI derived from the satellite over Tanzania 
for March 2013. 
 

The satellite estimates of radiation used in this work was gotten from EUMETSAT Satellite Application 
Facility on Climate Monitoring (CM SAF) [23]. This website has hourly, daily and monthly averages of 
DNI, SIS and CAL from 1983/01/01
The data ranged from 1983/01/01 to 
35.8� � and lattitude 6.2� � to 6.1��
where ground data were derived. The data is provided as a zipped folder.
 

2.1.2 Dodoma data on radiation. 
 

Solar radiation data at the ground stations can be measured directly using instruments such as pyranometers 
and pyrheliometers or indirectly from the number of sunshine hours or maximum and minimum temperature.
 

Pyrheliometers are used to measure direct so
enters it through a window and is directed onto a thermopile which converts heat to an electrical signal that 
can be recorded. A calibration factor is then applied to convert the millivolt s
energy flux, measured in ����. It is sensitive to wavelengths in the band from 
pyranometer is used to measure global solar radiation. It gives the reading in 
wavelengths in the band from 0.28 �
shading ring. 
 

In Tanzania, the Tanzania Meteorological Agency (TMA) organizes and manages climatic condition records 
of the country. These records are derive
variables such as solar radiation, hours of bright sunshine, maximum and minimum temperature and 
humidity. 
 

The ground data used in this work was obtained from a synaptic station in Dodoma, Tanza
are readily available in R-Instat through being made freely available by TMA.  R 
front end to the statistics language R. 
 

The data had other climatic records, rainfall, maximum and minimum temperatures. Figs
the first and the last few observations of sunshine duration data.
 

Fig. 2.3. The first 6 records of Dodoma sunshine duration hours
 

Fig. 2.4. The last 6 records of Dodoma sunshine duration hours
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shows examples of the average SIS and DNI derived from the satellite over Tanzania 

The satellite estimates of radiation used in this work was gotten from EUMETSAT Satellite Application 
onitoring (CM SAF) [23]. This website has hourly, daily and monthly averages of 

01 to 2013/12/31. For the sake of this work, hourly SIS
to 2013/12/31 and covering an area bounded by longitude 
�. This was selected because it is the area that bounds the area from 

where ground data were derived. The data is provided as a zipped folder. 

Solar radiation data at the ground stations can be measured directly using instruments such as pyranometers 
and pyrheliometers or indirectly from the number of sunshine hours or maximum and minimum temperature.

Pyrheliometers are used to measure direct solar radiation. The working of pyrheliometer is such that sunlight 
enters it through a window and is directed onto a thermopile which converts heat to an electrical signal that 
can be recorded. A calibration factor is then applied to convert the millivolt signal to an equivalent radiant 

It is sensitive to wavelengths in the band from 0.28 ��
pyranometer is used to measure global solar radiation. It gives the reading in ����  and is also sensitive to 

�� to 3 ��. Diffuse radiation is measured using a pyranometer with a 

In Tanzania, the Tanzania Meteorological Agency (TMA) organizes and manages climatic condition records 
of the country. These records are derived from the weather stations that make hourly observations on 
variables such as solar radiation, hours of bright sunshine, maximum and minimum temperature and 

The ground data used in this work was obtained from a synaptic station in Dodoma, Tanzania. These data 
through being made freely available by TMA.  R - Instat is an open source 

 

The data had other climatic records, rainfall, maximum and minimum temperatures. Figs. 2.3 
the first and the last few observations of sunshine duration data. 

 
 

first 6 records of Dodoma sunshine duration hours 

 
 

The last 6 records of Dodoma sunshine duration hours 

 
 
 

; Article no.AJPAS.44511 
 
 
 

6 
 
 

shows examples of the average SIS and DNI derived from the satellite over Tanzania 

The satellite estimates of radiation used in this work was gotten from EUMETSAT Satellite Application 
onitoring (CM SAF) [23]. This website has hourly, daily and monthly averages of 

SIS was selected. 
y longitude 35.7� � to 

. This was selected because it is the area that bounds the area from 

Solar radiation data at the ground stations can be measured directly using instruments such as pyranometers 
and pyrheliometers or indirectly from the number of sunshine hours or maximum and minimum temperature. 

lar radiation. The working of pyrheliometer is such that sunlight 
enters it through a window and is directed onto a thermopile which converts heat to an electrical signal that 

ignal to an equivalent radiant 
�  to 3 �� . A 

and is also sensitive to 
. Diffuse radiation is measured using a pyranometer with a 

In Tanzania, the Tanzania Meteorological Agency (TMA) organizes and manages climatic condition records 
d from the weather stations that make hourly observations on 

variables such as solar radiation, hours of bright sunshine, maximum and minimum temperature and 

nia. These data 
is an open source 

2.3 and 2.4 show 
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The column of interest for this work is the sunshine duration. 
 
This data was from 1983 to make its comparison with the satellite data easy. The subset data had 10958 
entries from Jan 1983 to Dec 2012. Out of these, a total of 3429 observations were missing values, with 
completely missing values for the years 1994, 1995, 1996, 1997 and 1998. Leaving out these years gave a 
total of 9131 observations with 1599 missing values. This makes approximately 18% of the values missing. 
Fig. 2.5 shows the missing sections of the data. 
 

 
 

Fig. 2.5. Missing values of sunshine hours 
 

2.2 Data preparation 
 
2.2.1 Satellite data 
 
CMSAF provides, other than the data, R scripts that can be used to unzip the data folder. The script 
Prep.Data.R was used to un compress the data. This gave several data les in Network Common Data 
Format (netCDF ) with a single file containing all the les merged. To get the data in csv format, the open 
NetCDF option from climate menu in R-Instat was used. Fig. 2.6 shows a snapshot of the climate menu of R-
instat 0:2:3. 
 

 
 

Fig. 2.6. Climate menu of R-������ version 0.2.3 
 
Clicking on open NetCDF opens a dialogue box that allows one to select the file to be opened. The opened le 
can then be exported as a CSV file. 



Because the ground data had missing values from 1994 to 1998, the satellite data was split into two, the 
lower data from 1983 to 1992 and the upper data ranging from 1999 to 2012. 
first 6 elements of the lower and upper datasets, respectively.
 

Fig. 2.7
 

Fig. 2.8
 
The period columns in both datasets were converted to respective dates indicating the year, month, date and 
hour. The data was then subset by removing the night hours 
Figs 2.9 and 2.10 show the lower and upper data with the dates after sub
 

Fig. 2.9. First 6 elements of the lower dataset after 

Fig. 2.10. First 6 elements of the upper dataset after 
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Because the ground data had missing values from 1994 to 1998, the satellite data was split into two, the 
ata from 1983 to 1992 and the upper data ranging from 1999 to 2012. Fig. 2.7 and Fig

first 6 elements of the lower and upper datasets, respectively. 

 
2.7. The first 6 elements of the lower data 

 
2.8. The first 6 elements of the upper data 

The period columns in both datasets were converted to respective dates indicating the year, month, date and 
hour. The data was then subset by removing the night hours (7PM − 5AM) because no radiation is received. 

show the lower and upper data with the dates after sub-setting. 

 
First 6 elements of the lower dataset after ���������� 

 

 
First 6 elements of the upper dataset after ���������� 
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Because the ground data had missing values from 1994 to 1998, the satellite data was split into two, the 
Fig. 2.8 show the 

 

 

The period columns in both datasets were converted to respective dates indicating the year, month, date and 
because no radiation is received. 
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The values were then aggregated to daily data for easy comparison with the daily sunshine hours. The            
lower dataset had a total of 3652 observations with 147 missing, while the upper, out of 5479               
observations, 80 were missing. This give a total of 227 missing values out of 9131 observations, translating 
to 2.5% of the satellite observations missing. Fig. 2.11 shows the missing values in SIS derived from the 
satellite. 
 

 
 

Fig. 2.11. Missing values of SIS 
 
2.2.2 Dodoma data on radiation 
 
Other than sub-setting, there were no further preparations that were done on it, since it was in a format that 
can be analyzed. 
 

3 Methodology 
 
Here we elucidate the methods used to address the main objective of this work. The methods used to 
compare satellite data and ground data are described. The chapter also describes the probability distributions 
functions that were used to describe the distribution of solar radiation. 

 
3.1 Comparison of radiation data sets 
 
The comparison of the two radiation datasets (Satellite and Ground Data) is to be done in two ways; 

 
(i) Drawing of comparative plots of surface solar irradiance from the satellite and the sunshine hours from 

Dodoma. 
(ii) Calculation of statistical parameters, mean percentage error (MPE), correlation (r), mean absolute                

deviation (MAD) and mean bias error (MBE) were calculated from the mean monthly SIS data as follows 
[24]; 

 
Let � �� be measurements from the ground and ��� be measurements from the satellite; 
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 MPE 

 

  MPE =
�

�
�∑ �

� �� �� �� 

� �� 
× 100��

��� �,           (3.1.1) 

 

 Correction (r) 
 

� =
� ∑ ��������∑ ���

�
��� ��∑ ���

�
��� ��

���

�� ∑ ��
��

�
��� ��∑ ���

�
��� �

�
�� ∑ ��

��
�
��� ��∑ ���

�
��� �

�
 ,                        (3.1.2) 

 
 MBE 

 

MBE =
�

�
�∑ ���� − ����

�
��� �            (3.1.3) 

 
 MAD 

        

MAD=
�

�
�∑ ���� − �����

��� �                           (3.1.4) 

 
The statistical parameters described are to be used to give an idea of whether satellite-derived measurements 
can be used to fill the gap in the ground measurements. 
 

3.2 Distribution of solar irradiance 
 
Because of their reliability when it comes to solving modern technology systems problems whose functionality 
depends on the reliability of its components, Log-normal, Gamma and Weibull distributions are tested to get the 
best fit for solar radiation in a given month. 
 

(i) Log-normal distribution. If a random variable  � =  ��(�) has a normal distribution with mean µ and 
standard deviation �, the continuous random variable � is said to have a log normal distribution, and its 
density function is 

 

�(�|�, �) =
�

��√��
exp �

��

���
[��� − �]�   ���  � ≥ 0.          (3.2.1) 

 

The mean and the variance of the distribution are  

 

mean = exp �� +
�

�
���     

         

�������� = (exp (2� + ��))(exp (��) − 1). 

 

(ii) Gamma distribution. If a random variable � has a Gamma distribution, its density function is  

 

�(�|�, �) =
�

��Γ(�)
�����

��

� , � > 0,                                 (3.2.2) 

 

 With  Γ(�) = ∫ �������  ��
∞

�
, 

 

Where � and � are parameters of the Gamma distribution. The mean and variance of Gamma distribution are  
� = ��, and  �� = ���. 
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(iii) Weibull distribution. This distribution has become more popular due to its ability to fit the data from 
many fields such as engineering, weather, and life data, to mention but a few. The general Weibull 
distribution has the density function 

 

�(�|�, �, �) =
�

�
�

���

�
�

���

��� �− �
���

�
�

�
�    � ≥ �, � ∈ ℝ, and �, � ∈ ℝ� ,                    (3.2.3) 

 
where � is the location parameter, � is the scale parameter and c the shape parameter. The Weibull distribution 
used in this work assumes that a failure can occur at point zero. Therefore, the location parameter is zero. This 
gives a distribution that has the density distribution 
 

�(�|�, �) =
�

�
�

�

�
�

���

���
�

�
�

�

.                                                    (3.2.4) 

 
The mean and variance of the Weibull distribution are 
 

� = �Γ �
�

�
+ 1� , and �� = �� �Γ �

�

�
+ 1� − Γ �

�

�
+ 1�

�

�. 

 
The probability distribution function that best describes the distribution of the solar irradiance in a given month, 
in Dodoma, was found to be Weibull distribution. 
 

4 Analysis and Results 
 
The results of the analysis are presented. The data were processed and subsequently analyzed in response to the main 
objective of this work. The findings presented in this chapter demonstrate the potential of using satellite-derived 
radiation data as a substitute of scarce radiation data measured from the ground. We start with the analysis of the 
ground data followed by satellite data and finally the comparison of the two datasets 
 

4.1 Fitted PDFs for solar radiation 
 
When the PDFs of lognormal, Weibull and gamma distributions were fitted, Weibull was found to describe 
the data much better than the other two. 
 

 
Fig. 4.1. Fitted distribution for April    Fig. 4.2. Fitted distribution for July 

 

4.2 Sunshine Hours 
 
Here, the analysis of the ground data is presented. Yearly plots are first presented. These include the box-plots and a 
time series plot showing the daily variation of sunshine hours over the years. The monthly plots and finally a 
histogram are plotted. 



Fig

Fig. 4.4. Daily variation of sunshine hours over the years
 
The following observations were made from the yearly plots for the ground data that were drawn
 
The box-plots in Fig. 4.3 show the daily sunshine hour split by years. I
sunshine hours has been stationary, there is no pattern from one year to another. This is confirmed by the 
time series plot of the sunshine hours as shown in 
small �-values which suggest that the series is stationary. The box
data like gaps and outliers. The years 1994 to 1998 had no records and thus
Other than yearly plots, monthly box-
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Fig. 4.3. Sunshine hours by years 

 

 
Daily variation of sunshine hours over the years 

The following observations were made from the yearly plots for the ground data that were drawn

show the daily sunshine hour split by years. It shows that over the years, the 
sunshine hours has been stationary, there is no pattern from one year to another. This is confirmed by the 
time series plot of the sunshine hours as shown in Fig. 4.4. The Ljung − Box test confirmed

values which suggest that the series is stationary. The box-plots also show unusual features in the 
data like gaps and outliers. The years 1994 to 1998 had no records and thus were omitted from the analysis.

-plots of the sunshine hours was also plotted. 
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January and February which show high variability in the sunshine hours.
 
In an attempt to know the distribution of the sunshine hours (where the majority of v
much variation is in the data), a histogram was also plotted.
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Onyaga et al.; AJPAS, 2(2): 1-21, 2018; Article no.

 
Fig. 4.5. Sunshine hours by months 

plots of sunshine hours split by months (Fig. 4.5) showed some possibility of seasonality in 
sunshine hours; the minimum values are recorded in the months of March and April, and the maximum in 
the months of June to October. The month of September shows less variability in sun-shine hours received. 

is depicted by the smaller length of the boxplot. The opposite is seen in the months of December, 
January and February which show high variability in the sunshine hours. 

In an attempt to know the distribution of the sunshine hours (where the majority of values falls and how 
much variation is in the data), a histogram was also plotted. 

 
 

Fig. 4.6. Histogram of sunshine hours 
 

The distribution of sunshine hours in Fig. 4.6 shows heavy skew to the left. This is an indication that 
majority of values fall between 5 and 11, an evidence that Dodoma receives a lot of solar radiation.
section presented the analysis that were done using the ground data. For easy comparison, the same analysis 
were done for the satellite derived estimates as shown in section 4.3. 
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section presented the analysis that were done using the ground data. For easy comparison, the same analysis 



4.3 Satellite estimates of solar radiation
 
This section describes the analysis done using the satellite
the monthly box-plots and finally the histogra
 

The box-plots for daily SIS split by years, like those for sunshine hours, show that the amount of solar 
radiation received over the years is stationary.
in the data. Most of these outliers are lower outliers, apart from a few especially in the year 1990, which 
shows very extreme values and thus are worth investigation. These outliers were investig
comparison of the two datasets. The years 1994 to 1998 were omitted to allow easy comparison with the 
sunshine hours. 
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4.3 Satellite estimates of solar radiation 

This section describes the analysis done using the satellite-derived estimates. The yearly plots fol
plots and finally the histogram of the satellite-derived measurements are presented.

 
 

Fig. 4.7. SIS radiation by years 
 

plots for daily SIS split by years, like those for sunshine hours, show that the amount of solar 
radiation received over the years is stationary. The box-plots also depicts unusual features, outliers and gaps, 
in the data. Most of these outliers are lower outliers, apart from a few especially in the year 1990, which 
shows very extreme values and thus are worth investigation. These outliers were investigated further in the 

The years 1994 to 1998 were omitted to allow easy comparison with the 

 
Fig. 4.8. Time series plot of the SIS 
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derived estimates. The yearly plots fol-lowed by 
derived measurements are presented. 

plots for daily SIS split by years, like those for sunshine hours, show that the amount of solar 
plots also depicts unusual features, outliers and gaps, 
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The years 1994 to 1998 were omitted to allow easy comparison with the 
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These time series plots also depict SIS stationarity as the SIS variations does not show any pattern over the 
years. It also shows the gap between 1994 to 1998, the years that were left out for easy comparison with the 
ground data. These are indications that the area under study receives on average, the same sunshine 
durations each year. The monthly variations were also investigated to get an insight of the distribution of the 
sunshine hours in each month. 
 

 
 

Fig. 4.9. SIS radiation by months 
 
The box-plots of SIS split by months shows that the months of January, February, March, August, 
September, October, November and December record larger measurements of solar radiation, with the 
month of September and October recording the highest amount. It also shows that the month of September 
receive almost the same amount of radiation throughout. This is shown by the small length of the box-plots, 
which is an indicator of less variability. The months of April to July receives lower surface solar irradiance, 
with the month of May recording the lowest readings. This may be because these are wet months. 
 

 
 

Fig. 4.10. Histogram of SIS 
 

The histogram of SIS (Fig. 4.10), just like Fig. 4.6, shows that solar surface radiation is heavily skewed to 
the left. This is an indication that Dodoma receives a lot of solar radiation. with the majority of values falling 
between 400 and 750. 
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To find the extent of the difference between the datasets, other statistical parameters, Correlation �, MPE 
(%), MAD (����), and MBE (����) were calculated. 

 

4.4 Comparison of sunshine hours and solar radiation estimates 
 
The exploratory analysis conducted shows that the two datasets, sunshine hours and the solar radiation 
estimates from satellite, are similar in distribution. Even though the two datasets are measured in different 
units, the similarity may be attributed to the fact that the underlying process generating the two datasets is 
the same. 

 
The comparison of the two datasets was done in two levels, daily data and monthly data. 

 
For easy comparison, the sunshine hours were converted to the same unit as the radiation data from satellite 
using Angstrom’s formulae [25], 

 

�� = ��� + ��
�

�
� ��,                                        (4.4.1) 

 
Where, ��  is the solar radiation in ����������, � is the actual duration of sunshine hours, �  is the 
maximum possible duration of sunshine, �� is the regression constant showing the fraction of extraterrestrial 
radiation reaching the  earth on overcast days (� = 0), �� + ��  is the fraction of the extraterrestrial radiation 
reaching the  surface on a clear day  and �� 

 

�� =
��(��)

�
�����[�� sin(�) sin(�) + cos(�) cos(�) sin (��)],         (4.4.2) 

 

Where is the solar constant, � is latitude in radians �� = 1 + 0.0033��� �
��

���
��,  

 

 � = 0.409��� �
��

���
� − 1.39� and �� = arccos (− tan(�) tan(�)). 

 
For the area under study,       � = −0.0342�, ��� = 1369����,   � = 12.1,  the maximum possible 
sunshine duration. Because there were no actual solar radiation data, no calibration was done to 
change, �� and ��, therefore, the default values of �� = 0.25 and �� = 0.5 were used. 

 
4.4.1 Evaluation of monthly data 

 
The comparison of monthly ground data calculated from sunshine hours and monthly satellite                                      
data was done using the monthly sums. It showed a bias of 727.2, mean percentage error of  4.04 and mean 
absolute deviation of 1194.40, as shown in Table 1 This small  MPE indicates that the two datasets are 
similar. The correlation between satellite data and ground data is strong with a value of 0.687 .                                      
However, the months of March, April and September showed lower values of 0.402, 0.572 and 0.25 , 
respectively, possibly because these are wet months. The months of May, June, July and August recorded 
the highest bias between the two datasets, probably because of the higher number of sunshine hours during 
this period. 
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Table 1. Bias, MAD, MPE and correlation (�) for the comparison of Monthly ground data and satellite 
data 

 
 JAN FEB MAR APRIL MAY JUN JUL AUG SEP OCT NOV DEC MEAN 

� 0.858 0.8734 0.402 0.572 0.735 0.6211 0.867 0.71 0.25 0.7167 0.779 0.855 0.687 
MPE -2.85 -3.78 -2.81 4.37 15.94 18.07 14.24 7.62 0.34 -2.09 1.51 -2.10 4.04 
MBE -406.5 -569.2 -402.3 722.5 2577.1 3178.4 2542.5 1357.8 64.7 -351.1 274.0 -261.1 727.2 
MAD 617.0 668.8 841.3 835.2 2577.1 3178.4 2542.5 1357.8 303.8 357.2 542.1 511.66 1194.40 
 
Table 2. Bias, MAD, MPE and correlation for the comparison of daily ground data and satellite data 

 
 JAN FEB MAR APRILMAY JUN JUL AUG SEP OCT NOV DEC MEAN 

�        0.872 0.818 0.708 0.682 0.708 0.648 0.651 0.633 0.454 0.384 0.757 0.877 0.683 
MPE -4.91 -4.09 -4.90 2.44 14.0 16.4 12.10 6.76 -0.21 -3.64 -0.11 -3.90 2.495 
MBE -15.28 -15.27 -13.47 23.12 80.72 97.23 73.99 42.60 1.19 -10.42 7.22 -8.24 21.95 
MAD 44.38 41.63 56.70 50.98 89.12 98.31 77.64 49.67 30.74 37.57 41.23 42.40 55.03 
 

Table 3. Monthly statistical parameters after removing outliers 
 
 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC MEAN 

�    0.86 0.87 0.44 0.77 0.74 0.68 0.87 0.69 0.21 0.718 0.79 0.86 0.71 
MPE -4.30 -5.37 -2.76 4.49 14.93 17.30 13.29 6.57 -0.69 -2.92 -0.48 -3.13 3.08 
MBE -628.22 -771.76 -394.79 733.04 2405.14 3008.21 2338.72 1157.39 -120.92 -496.87 -71.08 -440.44 559.87 
MAD 711.73 786.57 747.38 738.29 2405.14 3008.21 2338.72 1157.39 317.64 496.87 454.05 469.15 1135.93 
 

Table 4. Daily statistical parameters after removing outliers 
 
 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC MEAN 

�  0.86 0.87 0.44 0.77 0.74 0.68 0.87 0.69 0.21 0.718 0.79 0.86 0.71 
MPE -4.32 -4.03 -3.18 3.40 13.79 15.94 11.52 5.99 -1.06 -4.03 -0.98 -3.55 2.46 
MBE -16.63 -17.0 -9.91 24.47 78.04 93.01 68.62 36.54 -5.22 -15.24 0.07 -10.62 18.84 
MAD 39.36 33.34 43.02 43.78 84.75 94.05 71.61 43.44 30.23 38.36 38.0 39.0 50.32 
 

 
 

Fig. 3.9. SIS variation by month 
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Combined line graphs of ground and satellite data. The red lines represent the data collected from the ground 
while the blue lines represent the satellite data. Other than the monthly analysis, daily analysis was also done. 
This is shown in subsection 4.4.2. 
 

4.4.2 Evaluation of daily data 
 

The comparison of ground data calculated from sunshine hours and satellite data showed a bias of 21.95, 
Mean percentage error of 2.495 and mean absolute deviation of 55.03, as shown in Table 2. This is an 
indication that there is no big difference between the two datasets and therefore, the satellite data are a good 
approximation of the ground truth. 
 
Also, the correlation between satellite data and ground data is strong with a value of 0.683, but is lower              
than the correlation from the monthly data. However, the months of September and October showed               
lower values of 0.454 and 0.384, respectively, an indication that the satellite data and ground data correlate 
well in some months and not others, probably because of outliers or the season. This was further 
investigated. 
 
As stated earlier, there were a number of outliers with very extreme values in 1990, the upper outliers of this 
year, which start at about 820, corresponds to very high sunshine hours, 15.1, that cannot be reached at any 
particular time in the area under study. These outliers, together with those that are very low, below 150, were 
left out, and the statistical parameters calculated again. 
 
The monthly and daily statistical parameters after removing outliers are shown in Tables 3 and 4. The new 
average correlation increased to 0.71, and the other statistical parameters reduced consider-ably. However, 
the months of January, February and December consistently showed high correlation, and the month of 
September consistently low correlations. Because of this, the months of February and September were 
investigated further to get an insight of what can be the cause of these differences. 
 
For the month of February, it was found that there is linear spread of sunshine hours from minimum value of 
0.0 to the maximum value of 12 as depicted by the mean 7.9. Fig. 4.12 shows the spread of the radiation data 
from the two sources for the month of February. The solar radiation estimates from the satellite were also 
found to have a good spread with a mean of 533.9. The trend of the two sources of radiation were found to 
be similar throughout the month Fig. 4.14. The high correlation can therefore be attributed to the linear trend 
of data in this month. 
 
In the month of September, out of 688 observations, with the maximum record as 11.4, only 267 are less 
than 10. This is a clear indication of clustering of observations. High average record of 10.07 justify the 
clustering observed. The same pattern was seen in solar radiation estimates from satellite, where only 218 
observations out of 688 had values less than 600. Fig. 4.13 shows the spread of ra-diation data from the two 
sources for the month of September. The low correlation can be explained by the non-uniform distribution in 
the recorded data. In spite of the low correlation and the uneven spread of records, some general trends were 
observed. The records from the two data sources showed some general trend over the years (Fig. 4.11) and 
the month Fig. 4.15. 
 
In this chapter, we compared the radiation data from satellite and data from the ground. Some months 
showed very high correlation, while others recorded low correlations. The high correlation was found to be 
due to the good spread and similar general trends. Low correlations were found to be mainly due to clustered 
observations. However, the records in the months with low correlation showed similar general trend over the 
years as well as daily observations within the months. Our general feeling therefore is that the two data 
source shows a good similarity, and satellite data can be used for places where the data is not available to 
provide continuous data. 
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Fig. 4.12. Scatter plot in February Fig. 4.13. Scatter plot in September 
 

 
 

Fig. 4.14. Variation of SIS over February Fig. 4.15. Variation of SIS over September 
 

5 Conclusion 
 
The satellite data from EUMETSAT is the first freely available radiation data record for hourly, daily and 
monthly surface solar irradiance covering a region bounded between latitude ±65� and longitude ±65� for 
the time period 1983 to 2013. It has high quality, seen from fewer missing values and high spatial resolution 
0.05�  ×  0.05�. Hence, it is qualified for many climate applications such as trend analysis and variation. This 
work has looked at the possibility of using satellite data to fill the gap of weather data shortage in Africa to help 
in making well informed climatic decisions. 
 
In this work, we mainly considered solar radiation as a climatic element in Dodoma, Tanzania. The satellite data 
that was freely obtained from CMSAF was compared with the actual measurements from Dodoma. 
 
comparison showed that the two data sets are similar in distribution. The correlation of the two data sets was 
also found to be 0.71 on average for both monthly and daily records, which is an indication that the two data sets 
are similar, and satellite data can be used to fill in the gaps in ground measured records as well as be used in places 
where the records are not available. 
 
From the work, a Weibull probability distribution best describes the distribution of solar radiation of all the 
months for the area under study. This can be used to estimate the energy output a given photo voltaic cell can 
produce and therefore it is possible to select a solar panel that is suitable for a particular region. 
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