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Abstract: This paper studies the multi-source disturbances attenuation problem on the yaw motion
of unmanned aerial helicopter with a variable-speed rotor. The yaw motion subsystem dominated by
an electrically-driven tail rotor is firstly introduced, and its trajectory accuracy requires particularly
close attention. To this end, we establish a fourth-order yaw error dynamic equation; subsequently, a
nonlinear robust control scheme based on optimal H∞ principle is developed, consisting of laws of
virtual functions, parameter estimation and a compensation signal. The novelty of this scheme lies in
unifying the techniques to deal with the uncertain parameters, noise perturbations, actuator output
fault and external airflow turbulence into a simple framework. Stability analysis guarantees that the
yaw closed-loop system has the predefined performance of disturbance suppression in the sense of a
finite L2-gain. Comparison results with the extended state observer based backstepping controller
verify the effectiveness and superior performance of proposed scheme in an aircraft prototype.

Keywords: unmanned aerial helicopter; yaw control; nonlinear robust control; L2-gain

1. Introduction

The unmanned aerial helicopter (UAH) has always gained attention due to its advan-
tages of high efficiency, hover and cruise flight, but its attitude stabilization, especially the
yaw channel, is much more difficult compared with that of a quadrotor aircraft, because it
has strong coupling with the dynamics of the main rotor and is sensitive to manual opera-
tion. A robust yaw motion controller is necessary for achieving accurate heading. Currently,
small unmanned helicopters almost all have a separate electronic stabilizer called an artifi-
cial yaw damping system (AYDS), which consists of an amplifier, a proportional–integral
controller, an angular rate sensor and a high-frequency servo, it obviously increases the
costs and reduces system reliability. Meanwhile, La Civita’s flight testing results [1] for
the Yamaha Rmax robotic helicopter indicates that AYDS will decrease the bandwidth of
the yaw channel, thereby limiting its dynamic performance. The electric tail rotor has the
characteristics of high-precision regulation of rotor speed and a fast response. For small
or micro-sized UAH, it can control the yaw motion by only adjusting speed of the driven
motor. This operation manner can remove the rotor’s variable-pitch mechanism, and even
the traditional AYDS. For instance, the industrial grade helicopters of an aerial company
named UAVOS [2] have an electric tail rotor to simplify the yaw subsystem. Therefore,
the yaw control method this paper considered is deployed in that type of helicopter.

The anti-disturbance performance of the helicopter’s yaw channel is the prerequisite to
achieving an accurate flight heading. In recent years, for the traditional variable-pitch manip-
ulation mode, many researchers have explored various composite control frameworks that
combine linear, nonlinear or intelligent methods and a disturbance observer. Reference [3]
directly applied linear active disturbance rejection control (ADRC), and utilized an artificial
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bee colony algorithm to tune the yaw controller’s parameters; thus, it relies on trial and
error. Sliding mode control (SMC) techniques are robust to model parameters. Fast dynamic
property, an improved SMC method based on a linear extended state observer (ESO), was
designed in [4]. Xu [5] introduced the terminal SMC method to deal with uncertainties
and disturbances in the yaw channel. An additional filter and disturbance observer were
designed for chattering reduction. However, the previous SMC methods have intrinsic
properties of control input oscillation and sensitivity to mismatched uncertainties. The
second-order SMC technique is an improved way; and based on it, Jiang [6] proposed a
novel integral SMC to attenuate mismatched perturbations. Reference [7] gives a robust atti-
tude controller using the multi-variable super twisting algorithm. Additionally, disturbance
observer based (DOB) methods are widely applied in helicopter’s attitude system. Refer-
ence [8] proposed a fixed time SMC based on a novel sliding mode disturbance observer.
The limitation of this work is its only dealing with a class of slow varying disturbances;
external airflow perturbation often shows a sharp change in features in aircraft. In the
works of [9], the DOB state feedback and output feedback controller were proposed to
compensate the adverse effects of matched disturbance, respectively, and it needs exact
knowledge on the nominal system parameter. Backstepping control is another common
nonlinear framework applied in yaw stabilizing, which is often combined with ESO [10,11]
or finite-time convergence theory [12]. Li [13] provided a backstepping control strategy with
DOB to calm down random disturbances described by a Markovian jump system. This tech-
nique requires the intermediate variables to be derivable. In [14], adaptive model feedback
with error compensation is proposed to deal with system uncertainties and noisy signals.
Reference [15] designed a gain scheduled, robust H∞ state-feedback controller for linear
parameter varying attitude dynamics; however, it needs to solve linear matrix inequalities
online, thereby restricting the application to that type of low-cost, small helicopter.

Research on intelligent yaw controllers is diverse. To attenuate time-varying dis-
turbances, a fuzzy logic based control framework is also utilized for non-affine yaw dy-
namics [16,17]. Furthermore, the neural network method to approximate an unknown
model was applied for a small-scale helicopter’s yaw motion [18,19], Shen [20] constructed
an adaptive radial basis function (RBF)-based ADRC controller. It is an effective way
to reduce the influences of internal and external disturbances of UAH. It has too many
parameters in its control law. Similarly, in [21], an adaptive neural fault-tolerant tracking
regulation scheme was proposed considering the input saturation and full-state constraints.
In references [22,23], modern control technologies from a linear quadratic regulator to
computational intelligence schemes and a data-driven technique, were also elaborated for
the two-degree-of-freedom helicopter—including pitch and yaw motions—which is also
operated at variable speed, but it is a simplified test bed of real aircraft. It can be seen that
current yaw or attitude controllers usually have several modules, and each one is used to
deal with specific disturbances. Some intelligent control methods still need to overcome
the difficulties of real-time operation. Motivated by the discussions above, we aimed to
build a unified control framework for yaw subsystems of small-scale variable-speed UAHs
under multi-source disturbances, including mismatched noise disturbance, actuator fault,
external airflow fluctuation and uncertain parameters. It is based on the nonlinear H∞
principle of designing a robust L2 controller in the sense of a uniform-ultimately bounded
and a finite L2-gain of system. The main contributions of this work are summarized as
two aspects:

• A fourth-order yaw error dynamic model considering actuator output fault, matched
and unmatched disturbances is constructed. Based on the adaptive command filtered
method, we built a simple control framework with no need for using DOB and solving
complex HJI inequality to attenuate system multi-source perturbation.

• A rigorous stability analysis of the closed-loop yaw system was completed, which
achieved the predefined performance ofL2-gain disturbance suppression. Four groups of
comparative simulation results show the effectiveness and superiority of this control law.
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The rest is organized as follows: Section 2 introduces the fourth-order yaw error
dynamic equation. Section 3 presents the definitions of system’s output performance evalu-
ation and control law, then gives the proof based on analysis of Lyapunov stability. Section 4
verifies the proposed controller in the Xcell60 UAH simulation platform by comparing
with the extended state observer-based backstepping method. Finally, the conclusions and
future work are briefly described in Section 5.

2. Yaw Error Dynamic Model

A small-scale unmanned aerial helicopter’s dynamics are described by the Newton–
Euler modeling method. The ground and body coordinates are depicted in Figure 1, and its
yaw motion equation is given as follows:

ψ̇(t) =
sin φ(t)
cos θ(t)

q(t) +
cos φ(t)
cos θ(t)

r(t) + w1(ωb(t), Ω(t), t)

ṙ(t) =

(
Ixx − Iyy

)
Izz

p(t)q(t) + Nrr(t) + Ncδcol(t)

+ Ttr(ωtr(t), δtr(t)) + w2(wwind (t), t)

(1)

where Ω = [φ, θ, ψ]T are the Euler attitude angles; ωb = [p, q, r]T are the angular rates
in body coordinates, with roll, pitch and yaw, respectively. Nr and Nc are unknown
aerodynamic parameters in an equilibrium state; I(.) represents rotational inertia to the
corresponding axis; Ttr is the aerodynamic force of tail rotor, which depends on its rotational
speed and ωtr and pitch angle δtr; w1 is mismatched disturbance, mainly resulting from
noisy signals; w2 denotes matched disturbance aroused by uncertain dynamics and external
turbulent flow. Clearly, when p, q approaches zero without noise, ψ̇ ≈ r. Consider that the
helicopter is in the hover state without wind disturbance. The aerodynamic force of the tail
rotor can be calculated offline by the standard blade element method and represented as

Ttr(ωtr, δtr) = p0 + p1ωtr + p2δtr + p3ωtrδtr + p4δ2
tr + p5ω2

tr (2)

where pi is the constant parameter known by numerical calculation, ωtr is the rotating
speed of the tail rotor and δtr represents its pitch angle that is controlled by a servo device.
For a constant pitch rotor, δtr is deemed as constant. The force can be linearized as affine at
trim point (ωtr0, δtr0)

Ttr = Ttr(ωtr0, δtr0) +
∂Ttr

∂ωtr
∆ωtr = T0 + kw∆ωtr (3)

obviously, kw = p1 + p2δtr0 + 2p5ωtr0, ∆ωtr is the speed increment driven by a motor.
Generally, the current regulation period is about 50∼200 µs, much less than the speed
control period of around 5∼20 ms, so the electrical dynamics of tail rotor system can be
ignored. Thus, the mechanical dynamics are described as

τ ˙∆ωtr(t) = −∆ωtr(t) + (1 + ∆k(t))∆ωtrc(t) + w3(ωtr, t) (4)

where τ denotes the time constant of system; ∆k(t) represents the motor fault;
−1 < ∆k(t) ≤ km and km are unknown, w3; and is the modeling error. To improve
the tracking accuracy of yaw motion, we firstly define the yaw error eψ = ψ− ψd, and thus
obtain integrated error eI =

∫ t
t0

eψdt. Combining the equations of (1), (3) and (4), the yaw
error dynamic model under multi-source disturbances is governed by
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ėI(t) =eψ(t)

ėψ(t) =− ψ̇d(t) +
sφ(t)

cθ(t)
q(t) +

cφ(t)

cθ(t)
r(t) + w1(ωb(t), Ω(t), t)

ṙ(t) =T0 + Nrr(t) + Ir p(t)q(t) + Ncδcol(t) + kw∆ωtr(t) + w2(wwind (t), t)

∆ω̇tr(t) =−
1
τ

∆ωtr(t) +
1
τ
(1 + ∆k(t))∆ωtrc(t) + w3(ωtr(t), t)

(5)

where Ir = (Ixx − Iyy)/Izz ψd(t) represents the desired yaw angular; s(·), c(·) denote sine
and cosine operators; the control input is u = ∆ωtrc(t); and unknown parameter vector
W = [Nr, Ir, Nc]T, w = [w1, w2, w3] is the disturbance source. We define x = [eI , eφ, r, ∆ωtr]T

as the system’s state. It can be seen that the dynamics are a strict-feedback nonlinear system,
which is suitable for a backstepping control strategy, but this method has the inherent
problem of differential explosion for the high-order system. Thus, in the next section, the
command filtered adaptive backstepping approach [24] will be introduced to acquire the
derivations of virtual functions.

Figure 1. Small-scale unmanned aerial helicopter with a variable-speed tail rotor.

To facilitate the controller design and analysis, some preliminaries are stated as follows.

Lemma 1. For any x, y ∈ Rn, the following inequality holds:

xTy ≤ 1
2γ2 xTx +

γ2

2
yTy (6)

Lemma 2 ([25]). For given r ≥ 0, any x, y ∈ R, the inequality |x + y|r 6 cr(|x|r + |y|r) holds,
where cr = 2r−1 when r ≥ 0; cr = 1, for 0 ≤ r < 1.

Lemma 3 ([26]). For xi ∈ R, i = 1, 2, ..., n, 0 < p <≤ 1,(
n

∑
i=1
|xi|
)p

≤
n

∑
i=1
|xi|p ≤ n1−p

(
n

∑
i=1
|xi|
)p

(7)

Assumption 1. The desired yaw trajectory ψd and its time derivative ψ̇d are known and bounded.

Assumption 2. The pitch motion (θ, q) and roll (φ, p) of UAH have stabilized under the main
rotor controller; all signals are bounded.

3. Controller Design

The nonlinear H∞ control has excellent performance for a system with uncertainty
and disturbance, which is associated with solving the complex Hamilton–Jacobi–Issacs
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(HJI) partial differential equality or inequality. This paper proposes a well-defined H∞ yaw
control scheme in the sense of a uniform-ultimately bounded and system L2-gain without
the solution of the HJI equation, as shown in Figure 2. We firstly describe the multi-source
disturbances attenuation problem of UHA’s yaw motion as follows.

Figure 2. A nonlinear robust yaw controller scheme.

Definition 1. The yaw closed-loop system is called finitely L2-gain stable for a designed control
law u = ∆ωtrc(x, t) if the following conditions hold:

(1) When w = 0, all signals are uniform-ultimately bounded stable.
(2) When w 6= 0, the evaluation signal vector z for initial state x(0) = 0, T > 0 satisfies

∫ T

0
‖z‖2dt ≤ γ2

∫ T

0
‖w‖2dt + ε, ∀w ∈ L2[0, T] (8)

ε is a sufficiently small constant [27], the z = h(x) is a state-dependent vector and h(x) is
designed later.

Based on the yaw error dynamic model (5), we define the tracking errors:

x1 = x1, xi = xi − xc
i , i = 2, 3, 4

xc
i is the output of the filter ẋc

i = −ωi(xc
i − αi−1), xc

i (0) = αi−1(0), ωi > 0 is the time
constant of the filter, αi represents the virtual control function in every step and α0 = 0.
Clearly, there is a time (T1i > 0) when the filter error |xc

i (T1i)− αi−1(T1i)| < εi will be small
enough [24]. The virtual control law αi is designed as

α1 = −
(

c1 +
k2

1
2

)
v1 − k11ξ

µ1
1 − k12sign(ξ1)

α2 =
cθ

cφ

{
ψ̇d −

(
c2 +

k2
2

2
+

1
2γ2

)
v2 − k21ξ

µ1
2 − k22sign(ξ2)−

sφ

cθ
q− x1 + ẋc

2

}

α3 =
1

kw

{
−T0 −ΦT

1 Ŵ −
(

c3 +
k2

3
2
+

1
2γ2

)
v3 − k31ξ

µ1
3 − k32sign(ξ3)−

cφ

cθ
x2 + ẋc

3

} (9)

where ci > 0, ki > 0, kii > 0, i = 1, 2, 3, 4, γ is the given performance index of disturbance
attenuation, µ1 ∈ R≥1

p/q, and R≥1
p/q := {p/q|p, q ∈ R+

odd, p ≥ q}. Φ = [r, pq, δcol ]
T rep-

resents the known or measurable signals. Ŵ is the estimated value of W = [Nr, Ir, Nc]
T.

v = [v1, v2, v3, v4]
T is the compensated error vector and defined as

v = x− ξ (10)

the compensated signal ξ = [ξ1, ξ2, ξ3, ξ4]
T is designed to eliminate the effect of filtering

error to the virtual control yaw, and it is designed as
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ξ̇1 = −k11ξ
µ1
1 − k12sign(ξ1) + ξc

2 − α1 + ξ2

ξ̇2 = −k21ξ
µ1
2 − k22sign(ξ2) +

cφ

cθ
(xc

3 − α2)− ξ1 +
cφ

cθ
ξ3

ξ̇3 = −k31ξ
µ1
3 − k32sign(ξ3) + kw(xc

4 − α3)−
cφ

cθ
ξ2 + kwξ4

ξ̇4 = −k41ξ
µ1
4 − k42sign(ξ4)− kwξ3

(11)

Define the evaluation function of system output

z = h(x) = Kv

where K = diag(k1, k2, k3, k4) represents the penalty matrix. The smaller the evaluation
function is, the closer the system’s state is to the ideal virtual control function. Thus, yaw
error can be sufficiently small. The estimated law of aerodynamic parameters is designed as

˙̂W = v3ΓΦ− σ1ΓŴ (12)

where the Γ is a symmetric positive matrix, σ1 > 0. Finally, the yaw control law is
designed as

∆ωtrc = τ

{
1
τ

x4 −
(

c4 +
k2

4
2
+

1
2γ2

)
v4 − ρ̂sign(v4)− k41ξ

µ1
4 − k42sign(ξ4)− kwx3 + ẋc

4

}
(13)

where the ρ = 1
τ km|∆Wtr|max represents the maximum oscillation rate of rotor speed when

some faults occur to the motor, and its estimated law is designed as

˙̂ρ = kρ|v4| − kρσ2ρ̂ (14)

where kρ > 0, σ2 > 0, ρ̂(0) > 0. Based on the above analysis, the following theorem can
be obtained:

Theorem 1. Consider the yaw error dynamics (5) under multi-source disturbances. If the control
law is given as (13) with virtual functions (9), parameters’ estimation laws (12) and (14) and the
error compensation signal (11), then the yaw closed-loop system will achieve finite L2-gain that is
stable as described in Definition 1.

Proof. Selecting the following Lyapunov function,

V =
1
2

vTv (15)

Taking the derivative of V along the yaw dynamics and control law,

V̇ =
4

∑
i

vi(ẋi − ẋc
i − ξ̇i)

= v1(x2 + α1 + xc
2 − α1 − ẋc

1 − ξ̇1)

+ v2

(
−ψ̇d +

sφ

cθ
q +

cφ

cθ
(x3 + α2 + xc

3 − α2) + w1 − ẋc
2 − ξ̇2

)
+ v3

(
T0 + ΦTW + kw(x4 + α3 + xc

4 − α3) + w2 − ẋ3 − ξ̇3

)
+ v4

(
− 1

τ
∆ωtr +

1
τ
(1 + ∆k(t))∆ωtrc + w3 − ẋc

4 − ξ̇4

)
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Applying the virtual function’s (9), dynamics of the compensating signal in (11), control
law (13) and parameter estimation law (12) and (14):

V̇ ≤ v1

{
−
(

c1 +
k2

1
2

)
v1 + v2

}
+ v2

{
−
(

c2 +
k2

2
2
+

1
2γ2

)
v2 − v1 +

cφ

cθ
v3 + w1

}

+ v3

{
−
(

c3 +
k2

3
2
+

1
2γ2

)
v3 −

cφ

cθ
v2 + kwv4 −ΦT

1 W̃ + w2

}

+ v4

{
−
(

c4 +
k2

4
2
+

1
2γ2

)
v4 − ρ̂sign(v4)− kwv3 + w3

}
+ ρ|v4|

≤ −
4

∑
i=1

(
ci +

k2
i

2

)
v2

i −
1

2γ2

4

∑
i=2

v2
i − v3ΦTW̃ +

3

∑
i=1

vi+1wi − ρ̃|v4|

Define the Lyapunov function:

V(v, W̃ , ρ̃) = V +
1
2

W̃ TΓ−1W̃ +
1

2kρ
ρ̃2 (16)

Then comes derivative V, along with the adaptive laws (12) and (14):

V̇(v, W̃ , ρ̃) = V̇ + W̃ TΓ−1 ˙̂W + k−1
ρ ρ̃ ˙̂ρ

= V̇ + W̃Γ−1
(

v3ΓΦ− σ1ΓŴ
)
+ ρ̃k−1

ρ

(
kρ|v4| − kρσ2ρ̂

)
≤ −

4

∑
i=1

(
ci +

k2
i

2

)
v2

i −
1

2γ2

4

∑
i=2

v2
i +

3

∑
i=1

vi+1wi − σ1W̃ TŴ − σ2ρ̃ρ̂

Define H = V̇ + 1
2
(
‖z‖ − γ2‖w‖2); then,

H ≤ −
4

∑
i=1

civ2
i −

1
2γ2

4

∑
i=2

v2
i +

3

∑
i=1

vi+1wi −
γ2

2
‖w‖2 − σ1W̃ TŴ − σ2ρ̃ρ̂

≤ −
4

∑
i=1

civ2
i −

1
2γ2

4

∑
i=2

v2
i +

1
2γ2

3

∑
i=1

v2
i+1 +

γ2

2

3

∑
i=1

w2
i −

γ2

2
‖w‖2 − σ1W̃ TŴ − σ2ρ̃ρ̂

≤ −
4

∑
i=1

civ2
i −

σ1

2
‖W̃‖2 +

σ1

2
‖W‖2 − σ2

2
|ρ̃|2 + σ2

2
|ρ|2

≤ −α · 1
2

4

∑
i=1

v2
i −

σ1

λmax(Γ−1)
· 1

2
W̃Γ−1W̃ − kρσ2

1
2kρ

ρ̃2 +
σ1

2
‖W‖2 +

σ2

2
|ρ|2

= −aV + η

where α = min2ci, a = min{α, σ1/λmax(Γ−1), σ2kρ}, λmax represents the maximum eigen-
value, η = (σ1‖W‖2 + σ2|ρ|2)/2, so

V̇ + aV ≤ 1
2

(
γ2‖w‖2 − ‖z‖2

)
+ η (17)

When w = 0, obviously, V̇ + aV̇ ≤ η. Thus, there exists a compact set Ω(v, W̃ , ρ̃),
and V̇ ≤ 0 once system trajectory enters the outside of the compact set, so system signals
v, W̃ , ρ̃ will be uniform-ultimately bounded (UUB). The system state tracking error is
x = v + ξ, if the ξ is convergent, then x will also be UUB. Next, it is verified that ξ has fast
finite-time stability. Define the following function and derivative it:

Vξ =
1
2

4

∑
i=1

ξ2
i (18)
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V̇ξ = ξ1

(
−k11ξ

µ1
1 − k12sign(ξ1) + xc

2 − α1 + ξ2

)
+ ξ2

(
−k21ξ

µ1
2 − k22sign(ξ2) +

cφ

cθ
(xc

3 − α2)− ξ1 +
cφ

cθ
ξ3

)
+ ξ3

(
−k31ξ

µ1
3 − k32sign(ξ4) + kw(xc

4 − α3)−
cφ

cθ
ξ2 + kwξ4

)
+ ξ4

(
−k41ξ

µ1
4 − k42sign(ξ4)− kwξ3

)
= −

4

∑
i=1

ki1ξ
µ1+1
i −

4

∑
i=1

ki2|ξi|+ ξ1(xc
2 − α1) + ξ2

cφ

cθ
(xc

3 − α2) + ξ3kw(xc
4 − α3)

≤ −ki1,m

4

∑
i=1

(
1
2

ξ2
i

)(µ1+1)/2
−

4

∑
i=1

ki2|ξi|+ ρ
3

∑
i=1
|ξi||xc

i+1 − αi|

≤ −ki1,m2µ1−1V(µ1+1)/2
ξ −

√
2ki2,mV1/2

ξ +
√

2ρvV1/2
ξ

≤ −$1Vβ
ξ −
√

2(ki2,m − ρv)V1/2
ξ

where Lemmas 2 and 3 are used for the above inequality. ki1,m = min{ki1}, ki2,m = min{ki2},
v = max{vi}, ρ = max{1, cφ/cθ , kw}, β = (µ1 + 1)/2, $1 = ki1,m2µ1−1, µ1 ∈ R≥1

p/q. Define

$2 =
√

2(ki2,m − ρv) > 0; thus, the inequality can be written as

V̇ξ + $1Vβ1
ξ + $2V1/2

ξ ≤ 0 (19)

Based on Theorem 1 in [25], the compensated signal ξ will be finite-time stable when
t > Tξ , ξ = 0, where

Tξ = max{T1i}+
2
$2

+
V1−β

ξ (0)− 1

$1(1− β)
(20)

so state tracking error x will be UUB, and Equation (9) and Assumption 2 imply the virtual
control law αi is also UUB. Thus system, state x is UUB when w = 0. Namely, all signals
are uniformly ultimately bounded stable, satisfying condition (1) in Definition 1.

When w 6= 0, inequality (17) implies

V̇ ≤ 1
2

(
γ2‖w‖2 − ‖z‖2

)
+ η (21)

Integrate both sides of this inequality at zero initial condition, and choose σi = e−βt,
yielding

∫ T

0
‖z‖2dt ≤ γ2

∫ T

0
‖w‖2dt +

‖W‖2 + |ρ|2
2

∫ T

o
e−βtdt, ∀w ∈ L2(0, T) (22)

That is, condition (2) in Definition 1 is satisfied.

To sum up the above analysis, this section has completed the design of a nonlinear
robust yaw control scheme for a small UAH with a pure variable-speed tail rotor. The yaw
closed-loop system can be adjusted to resist multiple disturbance sources by presetting
disturbance suppression performance index γ. It is noteworthy that a pretty small value γ
will lead to a relatively large control energy; a compromise between the two is needed in
practice. The proposed controller is verified in the next section.

4. Simulation Results

The proposed yaw controller was tested in the Xcell60 unmanned helicopter simulation
platform, not just in a pure yaw dynamic model. Four groups of simulation experiments were
performed to show the disturbance suppression ability of the prototype against noisy signals,
motor faults, internal parameter perturbation and outside airflow turbulence in hovering and
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cruising flight states. In order to illustrate the advantages and disadvantages of the proposed
robust L2 disturbance attenuation approach, comparisons are carried out with a nonlinear
backstepping controller and an extended state observer (Bs-ESO) proposed by Zhao et al. [11].
The main rotor was dominated by a linear controller. The pitch angle of the tail rotor had
a trim value of 0.0227 rad, and baseline blade speed was 787.54 rad/s. Parameters of the
rotor’s force model were: kw = 0.2318, T0 = 9.2642. The robust L2 controller parameters
were designed as c = [1, 2, 2, 2], k = [1, 2, 2, 2], ki1 = [5, 5, 5, 5], ki2 = [1, 1, 1, 1], γ = 0.5,
σ1 = σ2 = e−2t, ω2 = 15, ω3 = 25, ω4 = 40, τ = 0.01, µ1 = 1, Γ = diag(5, 5, 5), kρ = 5.
The Bs-ESO control law was designed as

∆ωtr =
1

kw
(−Nrr− Ir pq− T0 − d̂− cosφ

cosθ
eψ + ṙc − k2(r− rc)) (23)

where rc = −cosθ(k1eψ − ψ̇d + sinφq/cosθ)/cosφ, k1 = 10, k2 = 15. d̂ is the estimated
value of lumped disturbance in the yaw channel by ESO; the observer gain is L = [15, 10].

In the first group of simulations, the performance of the proposed controller in resisting
mismatched noise disturbance was investigated. The prototype was in a hovering state.
Random Gaussian noises with variance of 0.05, with zero and nonzero means, were injected
to the feedback attitude rate signal, p, q and r, respectively, which are shown in Figure 3.

The yaw motion tracking and stabilizing performance are compared in Figures 4 and 5,
considering the situation that angular rate sensor is accompanied by zero-mean noise distur-
bance. The command was set as ψd = 30sin(0.5t) deg. It can be easily seen that robust L2
and Bs-ESO have similar dynamic capabilities and steady-state precision. The tracking perfor-
mance of the proposed method is slightly better than that of Bs-ESO, but for the stabilizing,
the opposite.

(a) Zero-mean Gaussian noise (b) Nonzero-mean Gaussian noise

Figure 3. Noisy signal of injecting to attitude rate.

(a) Yaw angle tracking accuracy (b) Yaw rate response

Figure 4. Yaw tracking performance under zero-mean noise disturbance.
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(a) Yaw angle stabilizing (b) Yaw rate response

Figure 5. Yaw stabilizing performance under zero-mean noise disturbance.

Furthermore, Figure 6 shows the results in face of nonzero-mean noise environment.
Obviously, the yaw angle of Bs-ESO deviates from the expected value; by contrast, the
tracking error of the robust L2 approach was small.

(a) Yaw angle tracking (b) Yaw angle stabilizing

Figure 6. Yaw tracking and stabilizing under nonzero-mean noise disturbance.

The second group of simulations verified the ability to resist motor fault disturbance.
The deviation of the driven motor’s response to step instructions kept in ∆k = 0.3sin(t).
Responses to the sine command are shown in Figure 7. It can be seen that two controllers
achieved similar tracking accuracy, but the yaw rate oscillation of the proposed robust L2 is
lower in comparison with that of Bs-ESO. Likewise, Figure 8 depicts the linear tracking ability
in the presence of a motor harmonic fault. The two methods showed similar performance
after a short transient period.

(a) Yaw angle tracking (b) Yaw rate response

Figure 7. Sine tracking performance in the presence of a harmonic motor fault.
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(a) Yaw angle tracking (b) Yaw rate response

Figure 8. Linear tracking performance in the presence of a harmonic motor fault.

Additionally, Figure 9 further studies the yaw channel’s ability to suppress large-
scale internal disturbances, considering both nonzero-mean random noise and motor fault
perturbation. Results show that the proposed approach has higher accuracy after the initial
stage, but Bs-ESO has static error.

(a) Yaw angle (b) Yaw rate

Figure 9. Performance at suppressing the internal disturbances.

Subsequently, the simulations verified the effect of the compensation term in the
control law, as shown in Figure 10. The angle responses of controllers with and without
compensation are compared. It can be seen that in the initial stage, the output angles of
two modes were basically the same because closed-loop system did not enter the stable
state. However, after entering the steady state, the closed-loop system with compensa-
tion greatly improved the stabilizing accuracy, and the fluctuation caused by motor fault
was suppressed.

Figure 10. Effectiveness of the compensation term coping with motor faults.
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The third group of simulations tested the controller’s resistance to external airflow
disturbance during cruising. Wind in body coordinates are shown in Figure 11, which were
produced by the Dryden turbulence model. The helicopter prototype gradually accelerated its
flight speed to about 10 m/s. The results are shown in Figure 12. The two controllers showed
nearly steady state accuracy. Their amplitudes and yaw rate were also about 10 deg/s, which
is still within an allowable range.

Figure 11. Airflow speed in body coordinates.

(a) Yaw angle (b) Yaw rate

Figure 12. Yaw stability performance under wind turbulence.

Finally, Figure 13 illustrates the robustness of the proposed control law to model
parameters. According to Equation (13), the yaw law design only needs rotor parameters
of kw and T0. It can be seen from the figure that although parameter kw is enlarged and
reduced by two times, the yaw steady-state accuracy remains basically unchanged. Only a
slight oscillation occurs in the initial stage.

Figure 13. Steady-state accuracy for different model parameter.

Figure 14 shows stabilizing performance for different disturbance attenuation indexes
γ in the proposed control law. It indicates a smaller γ value will improve the dynamic
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accuracy. The yaw error is smaller than for a larger index. For instance, when γ = 1,
the angle error in whole stage is too large, and the corresponding yaw rate has exceeded
the allowable range; in this case γ = 0.3 is an appropriate value. Therefore, it is easy to
enhance the performance of attenuating the multi-source disturbances by adjusting the γ
value in the control law.

(a) Yaw angle error (b) Yaw rate response

Figure 14. Performance of disturbance attenuation index γ.

As a result, we can conclude that the proposed robust L2 controller has the advantages
of coping with nonzero-mean noise and motor output faults. It maintains higher tracking
and stabilizing accuracy compared with the Bs-ESO controller. The performances of these
two methods are close under zero-mean noise environment or external airflow perturbation.

5. Conclusions

In this article, a nonlinear robust control scheme is proposed to deal with multi-
source disturbances in the sense of UUB and finite system L2-gain for a small UAH yaw
channel operated in pure variable-speed mode. Firstly, a fourth-order yaw error dynamics
model is established, considering sensor signals noise, actuator fault and external load
fluctuation; and then according to the predetermined performance index, an adaptive
filtered command yaw controller consisting of the laws of virtual functions, parameters
estimation and compensation signal is designed. Subsequently, stability analysis shows the
closed-loop system is able to achieve the predefined capability to disturbance attenuation.
Finally, the effectiveness of proposed method is verified with the Xcell60 UHA prototype
platform by comparing it with the backstepping controller together with an extended state
observer. Results show that the yaw closed-loop system can meet the requirements of
resistance to mismatched noise disturbance, motor failure, external airflow and model
parameter error by selecting an appropriate index γ. A smaller value of γ implies excessive
control energy, probably resulting in a large output oscillation; therefore, a direct computing
method for an optimal performance index will be explored in future work.
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Abbreviations
The following abbreviations are used in this manuscript:

UAH Unmanned Aerial Helicopter
AYDS Artificial Yaw Damping System
ADRC Active Disturbance Rejection Control
SMC Sliding Mode Control
DOB Disturbance-Observer-Based
UUB Uniform-Ultimately bounded
HJI Hamilton–Jacobi-Issacs
Bs Backstepping
ESO Extended State Observer
RBF Radial Basis Function
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