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Abstract: We propose two approaches based on feedforward control and model-predictive control,
respectively, to solve the station-keeping problem of an electric-propulsion geostationary Earth orbit
(GEO) satellite, whose thrusters are mounted on two robotic arms on its anti-nadir face. This novel
configuration enables a wider range of thrust direction, making it possible to regard the thrust
direction as control variables. To solve this control problem, we present the quick feedforward
controller (QFFC) and the fuel-optimal model predictive controller (FOMPC). The QFFC is developed
based on the analysis of GEO dynamics and the thruster configuration. The FOMPC applies an
optimization algorithm to solve the nonlinear model predictive control (NLMPC) problem with the
initial value given by the QFFC. Numerical simulations suggest that both controllers could achieve
stable station-keeping over multiple objective elements with fewer thrusters and fewer maneuvers.
The QFFC has higher control accuracy and lower computational requirements than the FOMPC,
whereas the FOMPC could significantly save fuel consumption. The robustness assessment and other
discussions of the controllers are also presented.

Keywords: geostationary station-keeping; electric propulsion; robotic arm; feedforward control;
model-predictive control

1. Introduction

Geostationary Earth orbit (GEO) satellites have been playing an important role in
applications such as communications, Earth environment, navigation, and aircraft control
for decades [1]. To help adjacent satellites avoid colliding with each other, the number of
satellites that could be deployed safely around a certain longitude is limited [2]. High-
accuracy station-keeping control could alleviate this problem by reducing the required
minimum distance or enabling formation flying [3].

Station-keeping by using chemical propulsion is a mature technology and has been
applied in plenty of missions [4,5], in which the ground-control center generates the control
command by measuring the deviation of the satellite. Due to the nature of the chemical
propulsion, chemical-propulsion GEO satellites execute station-keeping maneuvers every
two weeks conventionally, resulting in a significant decline in the station-keeping accuracy.
In order to solve the problems caused by chemical propulsion, the studies on new types
of propulsion, especially electric propulsion, can be traced back to the 1950s [6]. Today,
the electric-propulsion satellite has been capable of completing various kinds of space
missions [7–9], making it possible to form an all-electric satellite platform [10]. The superi-
ority of electric propulsion consists in the high specific impulse, which could significantly
reduce the fuel consumption over a lifetime of 12–15 years of GEO satellites [11]. In the
past 30 years, multiple electric propulsion systems, such as BPT-4000 [12], SPT-100 [13],
and PPS-1350 [14], have been successfully deployed in missions, and the Boeing company
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also introduced their world’s first all-electric satellite design 702SP in 2012 [10]. During this
time, researchers have been paying more attention to station-keeping by using electric
propulsion. Oleson et al. investigated applying different electric propulsion systems for
the north–south station-keeping [15]. Gomes and Prado used a hybrid optimal control
approach to minimize the fuel consumption of the north–south station-keeping [16]. Gazz-
ino et al. decomposed the minimum-fuel station-keeping problem into two steps: first,
solve the control problem with an indirect method, and then deal with constraints [17].
They later presented further work in which a three-step decomposition method is employed
to solve the same problem [18]. They also investigated solving the same problem via linear
integer programming [19,20]. De Bruijn et al. linearized the relative element model in the
geostationary station-keeping problem and came up with a method for determining station-
keeping maneuvers by using convex optimization based on this model [21]. Min et al.
discussed the influence of the configuration of electric thrusters on station-keeping and
momentum-dumping [22]. Meanwhile, how to improve the autonomy of the on-board con-
trol system is also a focus. Guelmen creatively solved this problem by using a closed-loop
control law, which requires the satellite’s real-time position and velocity information [23].
Because real-time GNSS determination is not always available for GEO satellites [24] and
the output does not enforce constraints, deploying this method in the application would
be challenging. Yang and Li studied the autonomous station-keeping control method for
GEO satellites and developed the corresponding software [25]. Park et al. also proposed an
autonomous station-keeping system based on the real-time determination [26].

In addition to the above studies, as a promising candidate for solving the station-
keeping problem of electric-propulsion GEO satellites, the application of the model-
predictive control (MPC) in this area has made significant progress in recent years. Being
good at coordinating multiple inputs/outputs and handling constraints [27], the MPC
is capable of optimizing the station-keeping performance while considering various con-
straints in the actual application. Walsh et al. studied applying the MPC for station-keeping
and momentum management [28–30]. In their work, the controller used a prediction
model based on the linearization of the orbital and attitude dynamics of GEO satellites
to optimize the fuel consumption while enforcing the constraints caused by the thruster
configuration. They chose the classical configuration in which four electric thrusters are
fixed on the anti-nadir face of the satellite. Their result, given by the annual velocity
increment, is ∆VAN = 78.67 m/s. In another work of their team, Weiss et al. deployed a
six-thruster configuration to save fuel consumption [31] and achieved a better result of
∆VAN = 59.4 m/s. More thrusters means higher costs and lower reliability. Therefore,
Caverly et al. proposed a new configuration where four thrusters are mounted on two
assemblies, and they obtained ∆VAN = 66.8 m/s[32]. Although this result is higher than
that in Ref. 28, it is still very competitive because they considered the on–off nature of the
thruster. Unlike these three studies, Zou et al. considered the geostationary station-keeping
problem with the MPC as an optimization problem based on the orbital elements instead of
the position and velocity [33]. In their study, they combined the linearized relative element
model proposed in Ref. 20 with the MPC and obtained ∆VAN = 72.3 m/s.

In this paper, in contrast to the previous studies, we apply a new configuration where
thrusters are mounted on two symmetrical robotic arms. This configuration was first
proposed by the Airbus company and had been applied in a space mission with the launch
of EUTELSAT 172B in June 2017 [34]. They named it the Deployable Thruster Module
Assembly (DTMA) and applied it to the Airbus Eurostar E3000 communication satellite
platform. More information about this platform can be found in their introduction [35].
This platform includes a versatile system that enables the thruster to point in the optimal
direction, benefiting both orbital transfer and station-keeping missions. Although our
study is not based on the specific platform of the Airbus Eurostar E3000, we are inspired by
the forward-looking idea of introducing robotic arms into the propulsion system. There-
fore, in this paper, we discuss how to design a controller that can take advantage of the
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wider range of the torque-free thrust direction brought by the robotic arm. The detailed
configuration applied in this paper will be stated in a later section.

In the previous MPC-related works, the researchers solved the station-keeping problem
within a short prediction horizon based on linear dynamics. Then they quantized the
optimal solution to enforce the constraints of the propulsion system, which could avoid
handling the nonlinear constraints directly. In this way, the thrust direction will not be
regarded as control variables in the control system. However, we believe that changing
the thrust direction is critical for saving the fuel consumption of station-keeping. This will
make the thrust direction subject to the nonlinear constraints caused by the pitch angle
and the yaw angle of the thruster. Therefore, we have to deal with the nonlinear model
predictive control (NLMPC) problem if introducing the MPC. The general approach to
solving this kind of nonlinear optimization problem is to first find an initial value, and then
use the optimization algorithm to obtain the solution, which is why we have to develop an
open-loop solver first.

Therefore, in our study, we consider the approach to figuring out the station-keeping
problem as three steps: first, we develop a state predictor (SP) to provide the prediction
of the orbital states of GEO satellites; then based on our analysis of the GEO dynamics
and the thruster configuration, we propose the quick feedforward controller (QFFC) as the
open-loop solver, which could work out the solution for the current control cycle. Finally,
we combine the SP and the QFFC with the NLMPC problem to form the fuel-optimal model
predictive controller (FOMPC). The FOMPC applies a simulated annealing (SA) algorithm
to find the optimal control solution with the initial value given by the QFFC. The FOMPC
achieves less fuel consumption by optimizing the velocity increment of the north–south
station-keeping, considering the station-keeping objective and the thruster configuration as
constraints. Simulations show that both the QFFC and the FOMPC could achieve stable
station-keeping. The QFFC has minor computational requirements and high accuracy for
the station-keeping, while the FOMPC could achieve much less fuel consumption.

This paper is organized as follows. First, the electric thruster configuration and the
dynamics are stated in Section 2. Next, in Sections 3 and 4, we introduce the geostationary
station-keeping problem and the proposed controllers in this paper. Then, we present
several numerical simulations in Section 5 to evaluate the performance and robustness of
the controllers. Finally, we draw conclusions in Section 6.

2. Thruster Configuration and Dynamics

In this paper, we assume a GEO communication satellite equipped with robotic arms
whose nominal longitude and latitude of the sub-satellite point are λT and 0◦, and the main
objective of station-keeping is to maintain the longitude and the latitude of the sub-satellite
point. The thruster configuration and the nonlinear orbital dynamics we apply in this
station-keeping problem will be stated in this section.

2.1. Thruster Configuration

As we have stated before, the thruster configuration in this paper is characterized by
two symmetrical robotic arms placed at the anti-nadir face of the satellite. Thrusters are
installed on the platform at the end of two robotic arms, providing the motorization to
enable a wider range of thrust direction. Figure 1 shows the model of a GEO satellite that
applies this configuration in the RSW (radial, along-track, cross-track) coordinate system,
where C and CE are the centers of mass of the satellite and the Earth, respectively. and P
represents the sub-satellite point on the ground, whose longitude and latitude are supposed
to be λT and 0◦. The X-axis is in the orbital plane and points to the anti-nadir direction,
while the Z-axis is perpendicular to the orbital plane. The robotic arms are installed on the
two corners of the satellite’s anti-nadir face symmetrically. Due to the requirement of the
antenna direction, the attitude of the satellite shown in Figure 1 is fixed during the working
of the communication module.
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Figure 1. Model of a satellite in the RSW coordinate system applying the thruster configuration with
robotic arms.

With the help of the robotic arm, the thrusters are capable of flexible motion. The thrust
direction in this paper is defined as the torque-free direction that passes through the center
of mass of the satellite. Because momentum management is not involved in this paper,
we do not consider the inside mechanics of the robotic arm. The thrust direction could
be given by the yaw angle α and the pitch angle β, as shown in Figure 1. α represents
the angle between the projection of the thrust direction in the X–Y plane and the +X-axis,
while β represents the angle between the thrust direction and the X–Y plane. In this paper,
we generally assume that thruster 1 could only work within (+ ++) and (+−+) space,
and thruster 2 could only work within (++−) and (+−−) space. Thus, we could simplify
the range of the feasible thrust direction to several inequality constraints, which could be
given by

−αmin ≤α1 ≤ αmax

−αmax ≤α2 ≤ αmin

βmin ≤β1 ≤ βmax

−βmax ≤β2 ≤ −βmin

(1)

where α1, β1, α2, β2 are corresponding to thruster 1 and thruster 2, respectively, and
αmax, αmin, βmax, βmin are nonnegative parameters. We will discuss the impact of these
parameters in Section 5.

2.2. Dynamics

The acceleration of the GEO satellite asat mainly consists of two parts, which could be
written as

asat = athr + ap (2)
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where athr is the acceleration generated by the thruster, and ap represents the perturba-
tion acceleration.

GEO satellites are mainly affected by the solar and lunar gravitational attraction,
the non-spherical perturbation of the Earth, and the solar radiation pressure [36]. Further-
more, the solar and lunar gravitational attraction not only changes the satellite’s inclination,
but its components in the orbital plane also have a considerable impact on the semi-major
axis and the eccentricity vector, making it the most important item among all perturbations.
For the non-spherical perturbation of the Earth, we only consider the J2 perturbation and
ignore the remaining higher-order terms. The solar radiation pressure depends on many
factors, such as the reflection coefficient and the surface-to-mass ratio of the satellite, and it
does not have much influence on the orbital elements compared to the former two pertur-
bations. Nevertheless, the solar radiation pressure is generally considered when studying
the geostationary station-keeping problem due to its impact on the attitude of the satellite.
Although this paper does not involve momentum management, we take the perturbation
of solar radiation pressure into account to be consistent with other studies. Thus, these
perturbation accelerations could be expressed as [31]

ap = asun + amoon + aJ2 + asrp (3)

where asun, amoon, aJ2 , and asrp are the perturbations of the solar and lunar gravitational
attraction, the J2 perturbation, and the solar radiation pressure, respectively. Their analytic
expressions are [37]

aq = µq

(
Rq

∆3
q
−

rq

r3
q

)
(q represents the sun or the moon)

aJ2 =
3µJ2r2

E
2r5

[(
5

r · ẑECI

r2 − 1
)

r− 2(r · ẑECI)ẑECI

]
asrp = −ρsun(1 + η)

Se

m
r2

sun
∆2

sun
R̂sun

(4)

where µ, µsun, and µmoon are the gravitational constants of the Earth, the sun, and the moon,
Rq is the position vector of q relative to the satellite, rq is the position vector of q relative
to the Earth, r is the position vector of the satellite, J2 is a coefficient in the non-spherical
perturbation model, ẑECI is the unit vector of the Z-axis in the Earth-centered inertial (ECI)
coordinate system, ρsun is the solar radiation pressure around the Earth, and η and Se

m
are the reflection coefficient and the effective surface-to-mass ratio of the satellite. asat
and all its components are in the ECI coordinate system, which would be more useful if
transformed into the RSW coordinate system as [ar, at, an]

T.
In order to avoid singularity, we adopt the modified equinoctial elements instead of

the Kepler orbital elements in our study. The modified equinoctial elements are given
by [38]

p = a
(

1− e2
)

f = e cos(ω + Ω)

g = e sin(ω + Ω)

h = tan(i/2 ) cos Ω

k = tan(i/2 ) sin Ω

L = Ω + ω + θ

(5)

in which {a, e, i, Ω, ω} belong to the Kepler orbital elements, and θ is the true anomaly.
The high-precision propagation of {p, f , g, h, k, L} is based on the Gauss variational equa-
tions [38], which could be written as
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ṗ =

√
p
µ

2p
w

at

ḟ =
√

p
µ

{
arsinL+[(1+w)cosL+ f ]

at

w
−(h sinL−k cosL)

g·an

w

}
ġ=
√

p
µ

{
−arcosL+[(1+w)sin L+g]

at

w
+(h sinL−k cosL)

f ·an

w

}
ḣ =

√
p
µ

s2an

2w
cos L

k̇ =

√
p
µ

s2an

2w
sin L

L̇ =
√

µp
(

w
p

)2
+

1
w

√
p
µ
(h sin L− k cos L)an

(6)

where w and s2 are defined as

w = 1 + f cos L + g sin L

s2 = 1 + h2 + k2.
(7)

3. Geostationary Station-Keeping Problem

In this section, we state the objective of geostationary station-keeping first. Then,
combined with the thruster configuration mentioned in the previous section, we introduce
some constraints into this problem. Finally, we present the control variables of the station-
keeping problem and their relationship with the control effect.

3.1. Control Objectives

The primary objective of geostationary station-keeping is to prevent the longitude
and the latitude of the GEO satellite from drifting too far. However, in addition to this
primary objective, it is also necessary to control the eccentricity vector

[
ex, ey

]T
=[ f , g]T,

the inclination vector
[
ix, iy

]T
= [h, k]T, and the drift speed of longitude λ̇, which are

important for the stability of station-keeping. Besides, some specific scenarios, such as
the multi-satellite collocation, also have requirements for the eccentricity and inclination
vectors [3]. Furthermore, due to the perturbations λ, ex, and ey have strong short-period
oscillations, which makes it inconvenient for us to analyze their deviations. Therefore, we
choose the mean elements to describe the orbital state of the GEO satellite, which could be
written as

x =
[
λ̄ ˙̄λ ēx ēy īx īy

]T
. (8)

The mean elements are obtained by the averaging operator [39]

ε̄ =
1
Ts

∫ Ts

0
ε dt =

1
2π

∫ 2π

0
ε dM (9)

where Ts is the orbital cycle of the GEO satellite, and ε̄ donates the mean elements in
Equation (8). Meanwhile, the objectives of the mean element are given by

xT =
[
λT λ̇T ex,T ey,T ix,T iy,T

]T. (10)

Thus, the deviation δx is

δx =
[
δλ δλ̇ δex δey δix δiy

]T
=
[
λT−λ̄ λ̇T− ˙̄λ ex,T−ēx ey,T−ēy ix,T− īx iy,T− īy

]T
.

(11)
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The primary objective of station-keeping is to compensate for δx so as to ensure
that x = xT at the end of each control cycle, thus giving the equality constraints of the
station-keeping objective.

3.2. Constraints

In this paper, we consider many constraints while solving the optimization problem
instead of enforcing them after obtaining the optimal solution. Some of these constraints
are imposed on the satellite, while others are imposed on the station-keeping process.
The satellite model equipped with robotic arms that we study in our work is a very specific
model. Therefore, we expect that the constraints of the problem could also be close to those
in the real application. These constraints could be summarized as follows.

1. The thrust direction is limited by the robotic arms, as stated in Section 2.1.
2. Although the thrust direction could be adjusted with the robotic arm, the adjustment

is supposed to be completed before the maneuver. The robotic arms are locked during
the working of thrusters.

3. Because station-keeping is carried out at a fixed cycle, the length of each control cycle
determines how far the satellite will drift during this time, making it essential to
improve the control accuracy. Meanwhile, the control cycle should be the integer
multiples of the orbital cycle to simplify the control problem. Therefore, the control
cycle is assumed to be one orbital cycle in our work.

4. Only one thruster can work at the same time due to the on-board power limitation.
5. The reliable ignition times of the thruster are limited. In order to reduce the ignition

times, each thruster only ignites once in one control cycle, and each ignition corre-
sponds to one maneuver. For one control cycle, maneuver 1 is performed by thruster
1, and maneuver 2 is performed by thruster 2.

6. The only exception to constraint 5 is that the satellite happens to enter the Earth’s
shadow while the thruster is still working. Due to the lack of energy, the working
of the thruster will be suspended until the satellite leaves the shadow region. In this
case, one thruster actually carries out two maneuvers before and after entering the
shadow region, but they will be regarded as one maneuver in the optimization.

7. To reduce the ignition times, the minimum working time for each maneuver is 30 s.

3.3. Control Solution

Based on the above description, a complete control solution S for one control cycle
should involve eight variables corresponding to the two maneuvers. S could be written as

S = [α1, β1, α2, β2, l1, l2, V1, V2]
T (12)

where α1, α2, β1, and β2 are the yaw angles and pitch angles of two thrusters, l1 and l2 are
the satellite’s right ascensions when conducting the two maneuvers, and V1 and V2 are
the velocity increments of the two maneuvers. Because the maneuver usually does not
last too long, l1 and l2 could be regarded as the value at the middle, and V1, V2 could be
approximate to [40]

Vi =
FT

m
Di (i = 1, 2) (13)

in which FT is the thrust magnitude generated by the thruster, Di is the length of the i-th
maneuver, and m is the mass of the satellite at the beginning of the control cycle, neglecting
small mass changes during the maneuver. The relationship between S and the velocity
increments v1, v2 in the RSW coordinate system could be written as

vi =

vri
vti
vni

 = −Vi

cos βi cos αi
cos βi sin αi

sin βi

 (i = 1, 2). (14)
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The changes of the mean elements caused by the two maneuvers are defined as ∆x1
and ∆x2, which are given by

∆xi =
[
∆λi ∆λ̇i ∆exi ∆eyi ∆ixi ∆iyi

]T
= Bivi

(i = 1, 2) (15)

in which Bi is derived from the approximate form of the Gaussian equations [39]

ȧ =
2Rs

Vs
at (16a)

λ̇ = n−ΩE −
2
Vs

ar (16b)

ėx =
1
Vs

(ar sin l + 2at cos l) (16c)

ėy =
1
Vs

(−ar cos l + 2at sin l) (16d)

i̇x =
cos l
Vs

an (16e)

i̇y =
sin l
Vs

an (16f)

where Rs and Vs are the nominal radius and velocity of GEO satellites, n =
√

µ

a3 and
l = Ω + ω + θ are the mean angular velocity and the right ascension, and ΩE is the angular
rotation rate of the Earth. It could be derived from Equation (16b) that

∆λi = −
2
Vs

vri + ∆ni · Ti (17)

∆λ̇i = ∆ni (18)

where ∆ni is the change of n caused by the i-th maneuver, which is given by

∆ni =
dn
da
· ∆ai = −

3
2

√
µ

a5 ·
2Rs

Vs
vt ≈ −

3
Rs

vt (19)

and Ti is the remaining time of the current control cycle after the i-th maneuver. Ti could be
approximate to

Ti ≈ ciTs. (20)

The parameter ci is given by

ci =


1− (li − lstart)

2π
, (li ≥ lstart)

(lstart − li)
2π

, (li < lstart)

, 0 ≤ li, lstart < 2π (21)

in which lstart is the satellite’s right ascension when the current control cycle starts. In con-
clusion, Bi could be written as
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Bi =



− 2
Vs

− 3ci
Vs

0

0 − 3
Rs

0

sin li
Vs

2 cos li
Vs

0

− cos li
Vs

2 sin li
Vs

0

0 0 cos li
2Vs

0 0 sin li
2Vs

=


. (22)

Hence, defining the changes of mean elements caused by maneuvers in one control
cycle as the control effect ∆xs, we could establish the relationship between S and ∆xs as

∆xs = ∆x1 + ∆x2 = B1v1 + B2v2 = F(S). (23)

4. Station-Keeping Controller Design

In this section, we present the controller design for the geostationary station-keeping
problem in this paper, which consists of three parts: the state predictor (SP), the quick
feedforward controller (QFFC), and the fuel-optimal model predictive controller (FOMPC).

4.1. State Predictor

Let us define the mean elements at the beginning of the first control cycle as the initial
state x0 and the prediction at the end of the k-th control cycle as xk. This can be written as

xk =
[
λ̄k

˙̄λk ēx,k ēy,k īx,k īy,k

]T
(k = 0, 1, 2, ...). (24)

The primary function of the SP is to obtain the prediction xk, given the initial state x0
and the control solutions of former control cycles {S1, S2, ..., Sk}.

Generally, the element changes caused by station-keeping maneuvers and natural
drifts are small within several control cycles, making them independent of each other. Thus,
the xk can be obtained by

xk = xk−1 + ∆xs,k + ∆xd,k (25)

in which ∆xs,k and ∆xd,k are the element changes caused by maneuvers and natural drifts,
respectively. ∆xs,k can be obtained through Equation (23), while ∆xd,k can be written as

∆xd,k =
[
∆λd,k ∆λ̇d,k ∆exd,k ∆eyd,k ∆ixd,k ∆iyd,k

]T. (26)

∆xd,k could be easily obtained in advance through the high-precision orbit propagation.
The high-precision orbit propagation is completed in the preparation of the SP and only
needs to be conducted once, causing a minor computational burden. Besides, ∆λd,k could
be approximate to

∆λd,k ≈ ˙̄λk−1Ts. (27)

4.2. Quick Feedforward Controller

With the help of the SP, we present the quick feedforward controller (QFFC). The pri-
mary function of the QFFC is to quickly work out the control solution for the current control
cycle based on the prediction given by the SP. Because the control objective is to compen-
sate for the deviation of the element, it is required that xk = xT. Therefore, according to
Equation (25), the effect of the control solution is supposed to fulfill

∆xs,k = xT − xk−1 − ∆xd,k. (28)
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Defining δxk = xT − xk−1 − ∆xd,k as the predictive deviation of the k-th control cycle,
we can obtain the basic rule of the feedforward control as

δxk = ∆xs,k = B1,kv1,k + B2,kv2,k = F(Sk) (29)

in which B1,k, B2,k, v1,k, and v2,k are given by Equations (14) and (22).
For Sk = [α1,k, β1,k, α2,k, β2,k, l1,k, l2,k, V1,k, V2,k]

T, we make an important simplification
first. The last two rows of Equation (29) can be written as[

δix,k
δiy,k

]
=

vn1,k

2Vs

[
cos l1k
sin l1k

]
+

vn2,k

2Vs

[
cos l2,k
sin l2,k

]
. (30)

Because the north–south station-keeping dominates the required velocity increment,
it must be carried out as efficiently as possible to save fuel consumption. According to
Equation (30), [cos l1,k, sin l1,k]

T and [cos l2,k, sin l2,k]
T have to be in the same or opposite

direction as [δix,k, δiy,k] to maximize the efficiency of north–south station-keeping, meaning
that either l2,k = l1,k or l2,k = l1,k + π. If l2,k = l1,k, the two maneuvers will be equivalent to
one larger maneuver, contrary to our original intention of setting two maneuvers. Therefore,
based on l2,k = l1,k + π, we could obtain that

l2,k = l1,k + π = arctan
(

δiy,k

δix,k

)
. (31)

This simplification would reduce the number of variables in the control solution from
eight to six.

Then Equation (29) could be rewritten as

VL,k = vr1,k + vr2,k +
3
2
(c1,kvt1,k + c2,kvt2,k) (32a)

VDT,k = vt1,k + vt2,k (32b)

VR,k = vr1,k − vr2,k (32c)

VET,k = vt1,k − vt2,k (32d)

VN,k = vn1,k + vn2,k (32e)

among which VL,k, VDT,k, VR,k, VET,k, VN,k are defined as

VL,k = −
Vs

2
δλk (33a)

VDT,k = −
Rs

3
δλ̇k (33b)

VR,k = Vs

[
δex,k sin l1,k − δey,k cos l1,k

]
(33c)

VET,k =
Vs

2

[
δex,k cos l1,k + δey,k sin l1,k

]
(33d)

VN,k =
2Vs

cos l1
δix,k =

2Vs

sin l1
δiy,k. (33e)

So far, if the control system is not subject to any constraint, it would be easy to obtain
the solution by solving Equation (32a–e). It is worth noting that there is usually more
than one solution for Equation (32a–e), among which we choose the one that minimizes
V1,k + V2,k as the control solution.

Furthermore, because the thruster cannot face the nadir direction as stated in Section 2.1, it
is obvious that

vr1,k ≤ 0, vr2,k ≤ 0. (34)
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Then by combining Equations (34) with Equation (32a)–(32d), we could obtain

VL,k −
3
4
(c1,k + c2,k)VDT,k −

3
4
(c1,k − c2,k)VET,k +

∣∣VR,k
∣∣ ≤ 0. (35)

Equation (35) is a necessary condition for Equations (32a)–(32e) to have a solution.
If the VL,k, VDT,k, VR,k, VET,k are all determined, this condition may not be matched. To solve
this problem, we have to change some of them to make sure the condition of Equation (35)
is satisfied. Changing VL,k, VR,k, VET,k means changing δλk, δex,k, δey,k, which will di-
rectly affect the stability of station-keeping, while changing VDT,k (i.e., changing δλ̇k)
will not. Therefore, increasing VDT,k until we obtain a solution is the only option under
these circumstances.

Although VL,k has been determined for the current control cycle, we can still change
VL,k+1 indirectly by changing VDT,k, making it easier for the condition of Equation (35) to
be matched in the next control cycle. The condition of Equation (35) in the next control
cycle can be written as

VL,k+1 ≤
3
4
(c1,k+1 + c2,k+1)VDT,k+1

+
3
4
(c1,k+1 − c2,k+1)VET,k+1 −

∣∣VR,k+1
∣∣ (36)

in which VET,k+1 and VR,k+1 are determined by the prediction of δxk+1, and VDT,k+1 is
related to later control cycles. Thus, we assume that VDT,k+1 = 0 and obtain the estimate of
the required VL,k+1 in the next control cycle as

ṼL,k+1 =
3
4
(c1,k+1 − c2,k+1)VET,k+1 −

∣∣VR,k+1
∣∣. (37)

Because

˙̄λk ≈
∆λd,k+1

Ts
=

λT − λ̄k − δλk+1
Ts

= − δλk+1
Ts

=
2

Rs
ṼL,k+1, (38)

the estimate of the required VDT,k can be given by

ṼDT,k = −
Rs

3
δλ̇k = −

Rs

3

(
˙̄λk − ˙̄λk−1 − ∆λ̇d,k

)
= −2

3
ṼL,k+1 +

Rs

3

(
˙̄λk−1 + ∆λ̇d,k

)
.

(39)

The intention of this step is not to guarantee the satisfaction of the condition of
Equation (35). In fact, it would not help the situation of the current control cycle. If ṼDT,k
cannot satisfy the condition of Equation (35), we still need to increase VDT,k based on ṼDT,k
until we obtain a solution. Changing VL,k+1 indirectly could avoid a large adjustment to
VDT,k+1 in the next control cycle. On the whole, this will smooth the variation of ˙̄λ, thereby
enhancing the stability of the station-keeping and slightly reducing fuel consumption.

In summary, by establishing the relationship between the control solution and the
control objective, we design the QFFC based on the feedforward control. The QFFC mainly
has two roles: an open-loop solver in the following FOMPC or an autonomous on-board
controller. We will evaluate the performance of the QFFC in Section 5.

4.3. Fuel-Optimal Model Predictive Controller

The QFFC stated above obtains the solution by adjusting VDT. Not optimal though the
VDT is, it has little influence on the overall fuel consumption due to its small proportion of
the required velocity increment. Actually, the required velocity increment is dominated
by north–south station-keeping. Therefore, to effectively optimize the fuel consumption,
the controller needs to adjust the VN of each control cycle according to the prediction given
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by the SP. On the other hand, the analysis of the condition of Equation (35) is only concerned
with the in-plane components of the velocity increment. Under extreme circumstances,
the QFFC may not be able to give the solution, which has to be fixed by adjusting VN.
Adjusting VN means we just need to ensure that the deviation of the inclination vector
does not exceed the threshold ∆imax at the end of each control cycle instead of requiring[
īx, īy

]T
=
[
ix,T, iy,T

]T strictly. Defining the value of VN applied in the k-th control cycle as
uk, we could regard the process to obtain the control solution by the QFFC as a function of
uk, which can be written as

Sk =

{
Q(uk)|δx=δxk

, if solution exists

0, if solution does not exist.
(40)

Therefore, the nonlinear model predictive control (NLMPC) problem can be formu-
lated as

min
Uh

1
2

N

∑
k=1

(V2
1,k|h + V2

2,k|h)

s.t. xk|h = xk−1|h + ∆xs,k|h + ∆xd,k|h,

x0|h = xh,

λ̄k|h = λT,

ēx,k|h = ex,T,

ēy,k|h = ey,T,√(
ix,T − īx,k|h

)2
+
(

iy,T − īy,k|h

)2
≤ ∆imax,

− αmin ≤ α1,k|h ≤ αmax,

− αmax ≤ α2,k|h ≤ αmin,

βmin ≤ β1,k|h ≤ βmax,

− βmax ≤ β2,k|h ≤ −βmin,

V1,k|h ≥ 0,

V2,k|h ≥ 0

(41)

where h is the number of the current control cycle, N is the prediction horizon, ςk|h denotes

the prediction of ς for k control cycles ahead of h, Uh =
[
u1|h, u2|h, ..., uN|h

]T
is the sequence

of uk|h within the prediction horizon, Sk|h = [α1,k|h, β1,k|h, α2,k|h, β2,k|h, V1,k|h, V2,k|h]
T are

given by Equation (40). The optimal solution of Equation (41) could be written as U∗h,
among which we only apply u∗1|h to the current control cycle h following the rule of
the MPC.

The prediction horizon N determines the number of control cycles involved in a single
optimization. When N = 1, Equation (41) becomes a greedy algorithm for minimizing the
fuel consumption of the current cycle; when N = ∞, the solution of Equation (41) is the
actual global optimum of the station-keeping problem. Therefore, increasing N benefits the
performance of the controller in theory. Whereas with the growth of the prediction horizon,
the SP cannot keep the prediction accuracy, and the computational requirement increases
fast as well. Therefore, the optimal value of N exists. We will verify this in the next section.

There are several practical algorithms to solve the nonlinear optimization problem [41],
among which we employ a simulated annealing (SA) algorithm in the optimization. The al-
gorithm was first proposed to solve the combinational optimization problem by simulating
the solid annealing phenomenon [42]. The SA has good robustness and parallelism, but it
also turns out to be sensitive to the initial value. In our case, the SA is used to find the
optimal solution sequence U∗h. Based on Equation (41), we define the evaluation function as
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J(Uh)=
1
2

N

∑
k=1

{
V2

1,k|h+V2
2,k|h+ξk

[(
ix,T− īx,k|h

)
2+
(
iy,T− īy,k|h

)
2
]}

,

ξk =


0,

√(
ix,T − īx,k|h

)2
+
(

iy,T − īy,k|h

)2
≤ ∆imax

P,

√(
ix,T − īx,k|h

)2
+
(

iy,T − īy,k|h

)2
> ∆imax

(42)

where ξk and P are penalty parameters to ensure that Uh, which fails to enforce the
constraint of the inclination vector, has poor performance. The initial value U0

h of the
optimization is given by the QFFC. The algorithm explores the solution space by generating
disturbances. In the end, as the temperature continues to drop, and the result of the SA
converges to the optimal solution U∗h. Applying u∗1|h to the current control cycle h, we
obtain the fuel-optimal control solution. The performance of the FOMPC will be evaluated
in Section 5.

5. Numerical Simulations

In this section, we present the results of several numerical simulations to test the
QFFC and the FOMPC. Then, by setting different constraints and introducing the atti-
tude and determination errors, we assess the robustness of the two controllers. To carry
out simulations, we assume a testing environment with a GEO satellite of initial mass
m0 = 5000 kg. The satellite is equipped with two identical thrusters, which could generate
the constant thrust of FT = 500 mN and have the specific impulse of Isp = 2250 s. We will
analyze the influence of different constraints and parameters in some simulations, while in
other simulations, they are set to their nominal values, which are βmax = 70◦, βmin = 0◦,
αmax = 60◦, αmin = 30◦, ∆imax = 8× 10−5, and N = 6. The dynamics and perturbations
are stated in Section 2.2. Let the coefficients of the solar radiation pressure in Equation (4)
be ρsun = 4.5605× 10−6 N/m2, η = 0.6, and S = 200 m2. The controllers are based on
the mean elements, whereas the simulations are conducted by the high-precision orbit
propagator with the osculating modified equinoctial elements. The start time of the mission
is set to 12:00 on 1 January 2020, and the initial osculating elements of the GEO satellite are

{p, f , g, h, k, L} =
{

42167, 0, 1×10−4, 0, 5×10−5, 0.289893
}

. (43)

The objective elements are given by{
λT, ex,T, ey,T, ix,T, iy,T

}
=
{

96◦, 0, 1×10−4, 0, 3×10−5
}

. (44)

The algorithms are programmed in Fortran 90, and the testing platform is Intel®

Core™ i7-9700K 3.6 GHz. To be consistent with the previous studies, we measure the fuel
consumption of station-keeping with the annual velocity increment V̄AN.

5.1. Results

First, we carry out the one-year simulation for the two controllers. Figures 2 and 3
present the time history of the osculating elements in the two simulations. Figures 4–6
compare the trajectories in the (δλ, δφ), (δex, δey), and (δix, δiy) plane, in which the red
dashed line represents the trajectory in the uncontrolled situation. It’s obvious that without
station-keeping, the satellite will quickly drift away from the objective. The results of
the two simulations show that both the QFFC and the FOMPC could achieve long-term
stable station-keeping with the V̄AN of 60.2 m/s/year and 54.2 m/s/year, respectively.
The number of maneuvers during 365 orbits of the QFFC and the FOMPC are 728 and 721,
suggesting that each thruster performs approximately one maneuver per orbit. The QFFC
and the FOMPC have almost the same performance in controlling the longitude and the
eccentricity vector. According to Figures 4 and 5, the control accuracy for the longitude and



Aerospace 2022, 9, 182 14 of 23

the eccentricity vector is about ±0.013◦ and 1.1× 10−4, respectively. The main difference
between the two simulations is that the QFFC shows higher accuracy for controlling the
inclination vector. That is because the QFFC requires the inclination vector to be fully
adjusted to the objective at the end of each control cycle, while the FOMPC allows a certain
deviation. Besides, Figure 3 shows that the inclination vector presents a more apparent
periodic variation under the control of the FOMPC. To figure out the reason, we give
Figure 7, which shows the half-year time history of the north–south velocity increment
∆VNS and Figure 8, which shows that of the average pitch angle β̄. ∆VNS and β̄ are given by

∆VNS = |V1 sin β1|+ |V2 sin β2| (45)

β̄ = arcsin(
∆VNS

V1 + V2
). (46)
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Figure 2. Time history of the osculating elements in the one-year simulation for the QFFC.
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Figure 3. Time history of the osculating elements in the one-year simulation for the FOMPC.
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Figure 4. The comparison of the trajectories in the (δλ, δφ) plane.
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Figure 5. The comparison of the trajectories in the (δex, δey) plane.
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Figure 6. The comparison of the trajectories in the (δix, δiy) plane.
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Figure 7. The half-year time histories of ∆VNS for the QFFC and the FOMPC.
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Figure 8. The half-year time histories of β̄ for the QFFC and the FOMPC.

Compared with the blue curve representing the FOMPC in Figure 7, the red one
representing the QFFC shows a larger variation, reflecting the impact of the solar and lunar
gravitational attraction. Meanwhile, according to Figure 8, β̄ reaches its ceiling of 70◦ most
of the time in both simulations, indicating that the east–west velocity increment is usually
forced to increase to adapt to the north–south velocity increment due to the constraint of
the pitch angle. Therefore, by reducing the variation of ∆VNS, the above situation may be
avoided, thereby improving the efficiency of station-keeping, explaining how the FOMPC
manages to save fuel consumption. However, this will allow the inclination vector to
vary with the solar and lunar gravitational attraction, reducing the control accuracy of the
inclination vector, as shown in Figure 6. The average CPU times per orbit of the QFFC
and the FOMPC are 0.09 s and 57.4 s, respectively. Although the FOMPC has higher
computational requirements, considering further code optimization and the upgrade of the
computing system on the satellite, the on-board application of the FOMPC is possible.

Next, we conduct the following simulations concerning the impact of different param-
eters and constraints. Due to the characteristic of the optimization algorithm, the results of
each simulation will be slightly different, even if the parameters are the same. Thus, we
apply the Monte Carlo simulation method [43], in which we repeat the same simulation
20 times and take the average annual velocity increment as the V̄AN. Figures 9–12 present
the simulations for the constraints of the yaw angle α and the pitch angle β. When we
change one of these parameters, the others are assumed to be βmax = 90◦, βmin = 0◦,
αmax = 90◦, αmin = 90◦. The results show that the effects of βmax, βmin, αmax, αmin
on the QFFC and the FOMPC are almost the same. βmax has the largest impact on the
efficiency of station-keeping. As βmax increases from 45◦ to 90◦, the V̄AN drops from
78.2 m/s/year to 57.5 m/s/year for the QFFC and 73.7 m/s/year to 51.4 m/s/year for
the FOMPC. The drop is more apparent when βmax is less than 80◦, indicating that βmax
will remain a major limitation on the station-keeping efficiency until it reaches 80◦. On the
contrary, according to Figure 10, βmin has almost no influence on the V̄AN until it reaches
40◦. According to Figures 11 and 12, αmax and αmin have the similar impact due to the
symmetry. The restricted areas in the two figures represent the values of αmax and αmin
with which the controllers could not operate stably. Outside the areas, the influences of
αmax and αmin declines fast and becomes negligible after αmax and αmin reach 45◦.

For the parameters N and ∆imax in the FOMPC, Figure 13 proves the existence of the
optimal value of N, which are 3, 6, and 7 under weak, normal, and strong constraints.
The detailed information of these three levels can be found in Table 1. It is obvious
that the optimal value of N goes up as the constraints get stronger, for the reason that
strong constraints make the optimization more necessary. Figure 14 indicates that ∆imax
significantly impacts the V̄AN because it determines the degree of optimization.
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Figure 9. The results of Monte Carlo simulations for βmax.
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Figure 10. The results of Monte Carlo simulations for βmin.
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Figure 11. The results of Monte Carlo simulations for αmax.
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Figure 12. The results of Monte Carlo simulations for αmin.
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Figure 13. The results of Monte Carlo simulations for the prediction horizon N under different levels
of constraints.
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Figure 14. The results of Monte Carlo simulations for ∆imax.

Table 1. The values of βmax, βmin, αmax, αmin in different levels of constraints.

Level βmax βmin αmax αmin

Weak 90◦ 0◦ 90◦ 90◦

Normal 70◦ 0◦ 60◦ 30◦

Strong 60◦ 0◦ 45◦ 25◦

Finally we demonstrate the robustness of the two controllers by taking the attitude and
determination errors into account. We assume that these disturbances follow the Gaussian
distribution as

χ ∼ N
(

χtrue, σ2
χ

)
(47)

where χ donates the yaw angle α, the pitch angle β, the position vector r, and the velocity
vector v, respectively, χreal is the true value, and σχ determines the error distribution
range (EDR). We assume the nominal error distribution range (NEDR) of the attitude and
determination as
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3σα,β = 0.05◦

3σr = 0.3 m,

3σv = 5×10−5 m/s,

(48)

which represents a high-accuracy level considering the present technology. Magnifying
NEDR by Hχ times and applying them in the algorithm, we perform similar Monte Carlo
simulations to investigate the influence of the errors of different types and different magni-
tudes. As shown in Figure 15, the attitude error has almost no effect on the two controllers.
However, Figure 16 suggests that raising the EDR of the determination results in a sig-
nificant increase of the V̄AN. This is because the determination error directly affects the
accuracy of the predictive model. For both the QFFC and the FOMPC, the station-keeping
becomes unstable after Hr,v exceeds 800, indicating that the maximum EDR of the deter-
mination is 3σr = 240 m, 3σv = 0.04 m/s, which is closed to the accuracy of the on-board
real-time GNSS determination [44]. In Figure 17, we also present the trajectories in the
(δλ, δφ) plane with the maximum EDR of the determination. Compared with Figure 4,
the control accuracy of the longitude has risen to ±0.025◦ for the QFFC and ±0.030◦ for
the FOMPC. However, that of the latitude hardly changes, indicating that the stability of
station-keeping for both the QFFC and the FOMPC is guaranteed under the condition of
low determination accuracy.
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Figure 15. The results of Monte Carlo simulations for the attitude error of different magnitudes.
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Figure 16. The results of Monte Carlo simulations for the determination error of different magnitudes.
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Figure 17. The trajectories in the (δλ, δφ) plane considering the maximum EDR of the determination.

5.2. Discussion

In the last part of this paper, we evaluate the performance of the QFFC and the FOMPC,
considering the parameters and constraints of different values. Simulation results verify
the validity of the QFFC and the FOMPC. Among all these parameters, βmax has the most
considerable influence on fuel consumption; αmax, αmin, and βmin affect fuel consumption
significantly only if the constraints are too strong. For the FOMPC, ∆imax determines the
degree of optimization; the predictive horizon N has a certain impact, and the optimal
value of N depends on how strong the constraints are. Robustness verification proves that
both controllers could handle the attitude and determination errors of different magnitudes,
while the rise of the determination error will cause extra fuel consumption. Here, we
present Table 2, in which we summarize our results under normal constraints and compare
them with those in the previous studies. The results prove that our approaches are effective.

Table 2. The summary of our results and the comparison with those in the previous works.

V̄AN (m/s/year)
Controlling [ex, ey]T

and [ix, iy]T
Number of
Thrusters

ON-OFF
Thrusters

Number of
Maneuvers Per

Thruster Per Orbit

QFFC 60.2 Yes 2 Yes 0.997

FOMPC 54.2 Yes 2 Yes 0.988

[27] 78.6 No 4 Yes -

[30] 59.4 No 6 No -

[31] 66.8 No 4 Yes 2.98

[32] 72.3 Yes - Yes -

6. Conclusions

Powered by advanced electric propulsion technology, the geostationary station-keeping
problem using electric propulsion has attracted much attention. In this paper, we apply a
novel thruster configuration involving two robotic arms. The QFFC and the FOMPC are
proposed, and an NLMPC problem is solved. Both the QFFC and the FOMPC are proven to
be effective in controlling multiple elements of the GEO satellite. The QFFC is capable of car-
rying out high-accuracy station-keeping with minor computational requirements, whereas
the FOMPC could significantly reduce fuel consumption. Further investigations suggest
that the parameters and constraints affect fuel consumption differently, among which the
ceiling of the pitch angle of the thrust direction is the most influential parameter. The ro-
bustness assessments of the two controllers are also presented, considering the attitude and
determination errors of different magnitudes. It proves that the two controllers are robust,
but the rise of the determination error will cause extra fuel consumption.
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Our study suggests that introducing robotic arms could benefit geostationary station-
keeping significantly because it enables a wider range of the thrust direction, but its
impact on the momentum management of the satellite is not involved in this paper. Next,
the control problem that combines station-keeping and momentum management based
on this thruster configuration will be our focus. Although the real application scenarios
may be different from our assumptions, we expect our study to provide references for the
control system design of GEO missions in the future.
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