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Abstract 
 

The article presents an extension of the Gompertz Makeham distribution using the Weibull-G family of 
continuous probability distributions proposed by Tahir et al. (2016a). This new extension generates a 
more flexible model called Weibull-Gompertz Makeham distribution. Some statistical properties of the 
distribution which include the moments, survival function, hazard function and distribution of order 
statistics were derived and discussed. The parameters were estimated by the method of maximum 
likelihood and the distribution was applied to a bladder cancer data. Weibull-Gompertz Makeham 
distribution performed best (AIC = -6.8677, CAIC = -6.3759, BIC = 7.3924) when compared with other 
existing distributions of the same family to model bladder cancer data. 
 

 
Keywords: Gompertz-Makeham distribution; Weibull-Gompertz Makeham distribution; hazard function; 

survival function; cancer. 
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1 Introduction 
 
The Gompertz-Makeham distribution (GMD) was introduced by Makeham in 1860 [1]. It is an              
extended model of the Gompertz probability distribution that was introduced by Gompertz in 1825 [2].                
The GMD is a continuous probability distribution that has been widely used in survival analysis,                
modelling human mortality, constructing actuarial tables and growth models. It has been recently                     
used in many fields of sciences including actuaries, biology, demography, gerontology, and computer 
science. 
 
A comprehensive review of the history and theory of the GMD can be found in [3]. Golubev [4] emphasizes 
the practical importance of this probability distribution. Detailed information about the GM distribution, its 
mathematical and statistical properties, and its applications can be found in [5] and [6]. 
 
The cumulative distribution function (cdf) and probability density function (pdf) of the Gompertz-Makeham 
distribution are defined as: 
 

   1
1

xx e
G x e


  

                                                                           (1) 

 
and 
 

   1xx exg x e e


 
  

                                                                    (2) 

 
respectively. 
 

For 0, , , 0,x      where   is the scale parameter and   and   are the shape parameters of 

Gompertz-Makeham distribution. 
 
There are families of distributions proposed by different researchers that are used in extending other 
distributions to produce compound distributions with better performance. These families among others 
include the beta generalized family (Beta-G) [7], Transmuted family of distributions [8], Exponentiated T-X 
[9], Exponentiated-G (EG) [10], Logistic-G [11], Logistic-X [12], Weibull-X [13], Weibull-G [14], a new 
Weibull-G family [15], a new generalized Weibull-G family [16] and Beta Marshall-Olkin family of 
distributions [17] etc. 
 
Recently, many authors have extended the Gompertz-Makeham distribution. Chukwu and Ogunde [18] 
introduced and studied the Kumaraswamy Gompertz Makeham distribution. El-Bar [19] used the quadratic 
rank transmutation map [8] to defined and study the transmuted Gompertz Makeham distribution with useful 
discussions as well as applications. 
 
Hence, the aim of this article is to introduce another extension of the Gompertz Makeham model, a new 
continuous distribution called Weibull-Gompertz Makeham distribution (WGMD) from a proposed family 
[15]. The rest of this article is arranged as follows: the definition of the new distribution will be presented 
with its plots and some properties. These are followed by the reliability functions, the order statistics for              
the distribution and the maximum likelihood estimates (MLEs) of the unknown parameters. The last                 
part involves the application of the proposed model with other models to a lifetime dataset and the 
conclusion. 
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2 Materials and Methods 
 
2.1 Construction of Weibull-Gompertz Makeham Distribution (WGMD) 
 
This section defines the cdf and pdf of the Weibull-Gompertz Makeham distribution (WGMD) using the 
family of distributions proposed [15], which has been used by other authors [20]. According to Tahir [15], 
the function for defining the cdf and pdf of any Weibull-based continuous distribution is given as: 
 

    log ( ) log ( )1( )

0

bG x b a G xb atF x abt dt ee

                                     (3) 

 
and 
 

  
  log ( )( ) 1

( ) log ( )
( )

b
a G xg x b

f x ab G x e
G x

 
                                                    (4) 

 

respectively, where  g x  and  G x  are the pdf and cdf of any continuous distribution to be generalized 

respectively. The parameters, a and b are the two additional new parameters responsible for the scale and 
shape of the distribution respectively. 
 
Using equation (1) and (2) in (3) and (4) and simplifying, the cdf and pdf of the WGMD of a random 
variable X can be obtained as: 
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               (6) 

 
respectively. 
 

For 0; , , , , 0x a b     ; where ,a ,b  ,    and β are the parameters of the WGMD. 

 
The following is a graphical representation of the pdf and cdf of the WGMD using arbitrary values of the 

parameters ,a ,b  ,    and β. 
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Fig. 1. A plot of PDF of the WGMD for varying parameter values 
 

It is observed in Fig. 1 that the WGMD is a positively skewed distribution and can take various forms. This 
means that distribution can be very useful for datasets that are skewed. 
 

 
 

Fig. 2. A plot of CDF of the WGMD for varying parameter values 
 
From the above cdf plot, the cdf increases when X increases, and approaches 1 when X becomes large or 
tends to infinity as expected. 
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3 Properties 
 
In this section, we defined and discuss some properties of the WGMD distribution. 

 

3.1 Moments 
 
Let X denote a continuous random variable, the nth moment of X is given by; 

 

'

0

( )
nn

n
E f x dxxX



  
                                                                                (7) 

 
Considering f(x) to be the pdf of the WGMD as given in equation (6) 
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Recall that from equation (6), 
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              (8) 

 
To simplify the pdf in (8) above, we carryout the following operations: 

 
Let 
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Then, using a power series expansion for A, we can write A as: 
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Substituting for the expansion above in equation (8), we have;  
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Also, let  
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Now, considering the following formula from [12] and [20] which holds for B for i≥1, then B can be written 
as follows: 
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Where for (for j ≥ 0) Pj,0 = 1 and (for k = 1, 2, …..) 
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Combining equation (10) and (11) and inserting the above power series in equation (9) and simplifying, it 
gives: 
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Now, if l is a positive non-integer, we can expand the last term in (12) as: 
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Therefore, f(x) becomes: 
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Using power series expansion on the last term in equation (14), we have 
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Now, substituting equation (15), the power series expansion in equation (14) above, one gets: 
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Now, let 
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b P

m jk le r i b i j








        

 
    

              
                   


 
 
This implies that: 

 

      1 1 1

, , , , ,( )
m r x m r x

i j k l m rf x e e
   

  
            

               (16) 

 
Hence, 

 

         ' 1 1 1

, , , , ,

0 0

( )
nn m r x m r xn

i j k l m rn
E f x dx x e e dxxX

   
  

 
               

 
 

     ' 1 1 1

, , , , ,

0 0 0

( )
n m r x m r xn n

i j k l m rn
f x dx x e dx x e dxx

   
  

  
           

 
   

 
               (17) 

 
Also, using integration by substitution method in equation (17) gives the following: 



 
 
 

Koleoso and Chukwu; JAMCS, 34(5): 1-17, 2019; Article no.JAMCS.52554 
 
 
 

8 
 
 

Let  
 

1
1 1

1

u
u m r x x

m r
 

 
        

;  1 1
du

m r
dx

     and 

 
1

1

du
dx

m r 


 
 

 

Let    
   

2
2 1 1

1 1

u
u m r x x

m r
 

 
          

;    2 1 1
du

m r
dx

      and 

   
2

1 1

du
dx

m r 


  
 

 

Substituting for u , x  and dx  in equation (17) and simplifying gives: 
 

       
1 2

' 1 1 1 1
, , , , , 1 1 2 21 1

0 01 1 1

u un n
i j k l m r n nn

u e du u e du
m r m r

 


   


 
    

 

 
  
      

       (18) 

 

Again recall that  1

0

n tt e dt n


    and that  1 1

0 0

1n t n tt e dt t e dt n
 

         

 
Thus, the nth ordinary moment of X for the WGMD is given as follows: 
 

 

  
 

    
'

, , , , , 1 1

1 1

1 1 1
i j k l m r n nn

n n

m r m r

 


   
  

    
  
      

                                             (19) 

 

3.2 The mean 
 
The mean of the WGMD can be obtained from the nth moment of the distribution when n = 1 as follows: 
 

       
'

, , , , , 2 21 1 1 1
i j k l m r

m r m r

 


   


 
  
      

                                                  (20) 

 

3.3 The variance 
 
The nth central moment or moment about the mean of X, say μ

�
, can be obtained as 

 

' ' '
1 1

0

( 1)
nn i i

n in
i

n
E X

i
   



 
       

 
                                                               (21) 

 

The variance of X for WGMD is obtained from the nth central moment when n = 2, that is, the variance of X 
is the nth central moment of order two (n = 2) and is given as follows: 
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 22 ][][)( XEXEXVar 
                                                                                     (22) 

 
2' '

2 1( )Var X   
 

 

               

2

, , , , , , , , , ,3 3 2 2

2 2
( )

1 1 1 1 1 1
i j k l mr i j k l mrVar X

m r m r m r m r

   
 

       

    
        

                 

(23) 

 
The coefficients variation, skewness and kurtosis measures can also be calculated from the non-central 
moments using some well-known relationships. 
 

3.4 Moment generating function 
 
The mgf of a random variable X can be obtained by 
 

0

( ) ( )
tx tx

x
t E f x dxe eM



  
                                                                       (24) 

 
Using power series expansion in equation (24) and simplifying the integral gives; 
 

 

  
 

    
'

, , , , , 1 1
0 0

1 1
( )

! ! 1 1 1

n n

x n i j k l m r n n
n n

n nt t
M t

n n m r m r

 
 

   

 

 
 

          
        

         (25) 

 
where n and t are constants, t is a real number and μ

�
′  denotes the nth ordinary moment of X. 

 

3.5 Characteristic function 
 
The characteristic function of a random variable X is given by; 
 

     ( ) cos( ) sin( ) cos( ) sin( )itx
x t E e E tx i tx E tx E i tx                       (26) 

 
Simple algebra and power series expansion proves that 
 

 
 

 
 

2 2 1
' '

2 2 1
0 0

1 1
( )

2 ! 2 1 !

n nn n

x n n
n n

t t
t i

n n
  

 


 

 
 


                                             (27) 

 
Where μ

��
′  and μ

����
′ are the moments of X for n=2n and n=2n+1 respectively and can be obtained from μ

�
′   

in equation (20). 
 

4 Some Reliability Functions 
 
In this section, the survival and hazard functions from the WGMD are presented with adequate plots and 
their discussions. 
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4.1 The survival function 
 
The survival function as the name implies describes the probability that a component or an individual will 
not fail after a given time. It is mathematically given as: 
 

   1S x F x                                                                                                  (28) 

 
Taking F(x) to be the cdf of the WGMD, substituting and simplifying (28) above, we get the survival 
function for the WGMD as: 
 

 
 1

log 1

1

b
xx e

a e

S x e




    
    
                                                                              (29) 

 
The following is a plot of the survival function for arbitrary parameter values. 
 

 
 

Fig. 3. A plot of the survival function of WGMD 
 
The figure above reveals that the probability of survival for any random variable following a WGMD which 
decreases as the time increases, that is, as time goes on, probability of life decreases as it is expected. This 
shows that the WGMD would be useful for modeling most real life situations. 
 

4.2 The hazard function 
 
Hazard function is also called failure or risk function. It describes the probability failure for a component 
given an interval of time. The hazard function is defined mathematically as; 
 

 
 
 

 
 1

f x f x
h x

F x S x
 


                                                                                                          (30) 
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Considering f(x) and F(x) to be the pdf and cdf of the proposed WGMD given previously, we obtain the 
hazard function as: 
 

   
 

 
 

1

1

1 log 1
1 1

log 1
1

log 1

( )

1 1

b
xx e

x x

b
xx e

x

b a e
x e x e

a e
x e

x
ab e e e e

h x

e e




  
 







 



 

  

  

  
     
          

  
    
       

              
 
        
 

              (31) 

 
The following is a plot of the hazard function at chosen parameter values. 
 

 
 

Fig. 4. A plot of the hazard function of the WGMD 
 
Fig. 4 above shows the behaviour of hazard function of the WGMD. It means that the probability of failure 
for any WGM random variable increases as the time or age of a subject increases, that is, as time goes on, 
the probability of failure or death increases. 
 

5 Order Statistics 
 
Suppose 1 2, ,......, nX X X  is a random sample from a distribution with pdf, f(x), and 

1: 2: :......n n i nX X X    denote the corresponding order statistic obtained from this sample. Then the pdf,

 :i nf x  of the 
thi  order statistic can be defined as; 

 

 
   

   
1

:
0

!

1 ! !
( 1)

n i k ik

i n
k

n in
x f x

ki n i
F xf

  



 
  

   
                          (32) 

 

where f(x) and F(x) are the pdf and cdf of the Weibull Gompertz Makeham distribution respectively. 
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Using (5) and (6), the pdf of the 
thi  order statistics :i nX , can be expressed from (32) as; 

 

 

 
 

 
1

1

1
1

:
0 log 1

1 1

log 1
! log 1( ) *

( 1)!( )!

1

( 1)

x

b
xx e

x x

i k

b
x e

n i k

in
k a e

x e x e

xx x eab e e
n in a ex
ki n i

e e e

f







  
 



 

   

  

 


  



  
    

        

 
                         

    
  
    


 1

b

e

  
  
  
  

  

 
 
 
  

               (33) 

 

Hence, the pdf of the minimum order statistic (1)X  and maximum order statistic ( )nX  of the WGMD are 

given by; 

 

 

 
 

 

 
1

1
1

1

1:
0 log 1

1 1

1log 1
1 log1( ) *

1

( 1)

x

b
xx e

x x

k

b
x e

n k

n
k a e

x e x e

xx x eab e e
n a ex n
k

e e e

f







  
 



 

   

  


  



  
    

        

 
                                
        

    



b

e





 
 
 
  

         (34) 

 
and 

 

 

 
 

 

 
1

1

1
1

:
log 1

1 1

1log 1
log 1( )

1

x

b
xx e

x x

n

b
x e

nn
a e

x e x e

b
xx x eab e e

a ex n

e e e

f e







  
 



 

   

  




  

  
   
        

 
                              
        

    

 
 
 
  

          (35) 

 
respectively. 
 

6 Estimation of unknown Model Parameters using Maximum Likelihood 
Method 

 

Let 1 2, ,...., nX X X  be a sample of size ‘n’ independently and identically distributed random variables 

from the WGMD with unknown parameters , ,a b  α, β and θ defined previously. The pdf of the WGMD is 

given from (6) as: 
 

   
 

 

1
1 log 1

1 1

1

log 1

( )
1

b
xx e

x x

x

b a e
x e x e

x e

x
ab e e e e

f x
e




  
 




 



 

    
     
          

  

              
 
    

 
The likelihood function is given by; 
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 
     

 

 

1

1

1 log 1
1 1

1 1

1

1

log 1

| , , , ,

1

b
xn ix ei

x xi i
i i i

xi
i

b a en n
x e x en i

i i

n
x e

i

x
ab e e e e

L X a b

e




  
 




 




 

  

  



  
     
          

 

  



                   
 
  

 



            (36) 

 

Let the log-likelihood function,  log | , , , ,l L X a b    , therefore 

 

     1

1 1 1 1

log log log 1 1 log log 1
xi

ii

n n n n
x exi

i
i i i i

x
l n a n b e x e b e
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Differentiating � partially with respect to , ,a b  α, β and θ respectively gives; 
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Equating equation (38), (39), (40), (41) and (42) to zero and solving for the solution of the non-linear system 

of equations gives the maximum likelihood estimates of the parameters , ,a b α, β and θ respectively. 

However the solution cannot be obtained analytically except numerically with the aid of suitable statistical 
software like Python, R, SAS, etc., when data sets are given. 
 

7 Application to a Real Life Dataset 
 
This section presents a dataset on the remission times (in months) of a random sample of 128 bladder cancer 
patients with its descriptive statistics and application to some selected extensions of the Gompertz-Makeham 
distribution together with the classical Gompertz distribution. The performance of the Weibull Gompertz-
Makeham distribution (WGMD) is compared to some families of Makeham distribution such as 
Kumaraswamy Gompertz Makeham distribution (KGMD), Transmuted Gompertz-Makeham distribution 
(TGMD), Gompertz-Makeham distribution (GMD) and the Gompertz distribution (GD). 
 
The performance of the above listed models is ranked using some criteria such as the AIC (Akaike 
Information Criterion), CAIC (Consistent Akaike Information Criterion) and BIC (Bayesian Information 
Criterion). It is considered that the model with the smallest values of these statistics will be the best model to 
fit the data. 
 
Data set: This data set represents the remission times (in months) of a random sample of 128 bladder cancer 
patients. It has previously been used in [21,22,23]. It is summarized as follows: 

 
Table 1. Summary statistics for the dataset 

 
Parameter n Min 

1Q
 

Median 
3Q

 
Mean Max Var Skew Kurt 

Values 128 0.0800 3.348 6.395 11.840 9.366 79.05 110.425 3.3257 19.1537 

n-sample size, Min–Minimum, 1Q -First Quartile, 3Q -Third Quartile, Max-Maximum, Var-Variance, Skew-Skewness, 

Kurt-Kurtosis 

 
From the descriptive statistics in Table 1, it is observed that the data set is positively skewed with a very 
high coefficient of kurtosis and therefore suitable for flexible and skewed distributions. 

 
From Table 2, comparing the values of the AIC, CAIC and BIC for each model, the WGMD has the best 
performance compared to the KGMD, TGMD GMD and GD. This is due to the decision rule which says that 
the distribution or model with the smallest values of the test statistics (AIC, CAIC and BIC) is taken as the 
most adequate or efficient model. These values also agree with the fact that generalizing any continuous 
distribution provides a compound distribution with a better fit than the baseline distribution [24]. 
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Table 2. The strength of the selected models using the AIC, CAIC and BIC values of the models 
evaluated from the maximum likelihood estimations based on the bladder cancer data 

 
Distributions Parameter estimates AIC CAIC BIC Ranks of models 
WGMD  0.006233 

 
0.005620 

  0.006119 
a  0.006070 

b   0.004811 

-6.8677 -6.3759 7.3924 1 

KGMD  1.4996 

 
0.0008286 

  3.2157 
a 0.1934 

b  0.09415 

17.3139 17.8057 31.5741 
 

3 

TGMD  9.7913 

 
 9.6327 

  9.4246 

   0.8682 

51.5307 51.8559 62.9388 5 

GMD  2.04152 

 
7.8924 

   7.9969 

29.2259 29.4194 37.7820 4 

GD    4.5814 

 
 4.5809 

12.8378 12.9338 18.5418 2 

 

8 Conclusion 
 
This article proposed a new distribution called Weibull-Gompertz Makeham distribution. The statistical 
properties of the distribution have been derived and studied extensively. The model parameters were 
estimated using maximum likelihood method. The distribution (WGMD) has the best fit compared to the 
other four models considered in this study when applied to real life time data. 
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