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Abstract

Determining the sound speed cs in compact stars is an important open question with numerous implications on the
behavior of matter at large densities and hence on gravitational-wave emission from neutron stars. To this scope,
we construct more than 107 equations of state (EOSs) with continuous sound speed and build more than 108

nonrotating stellar models consistent not only with nuclear theory and perturbative QCD, but also with
astronomical observations. In this way, we find that EOSs with subconformal sound speeds, i.e., with c 1 3s

2 <
within the stars, are possible in principle but very unlikely in practice, being only 0.03% of our sample. Hence, it is
natural to expect that c 1 3s

2 > somewhere in the stellar interior. Using our large sample, we obtain estimates at
95% credibility of neutron-star radii for representative stars with 1.4 and 2.0 solar masses, R 12.42 km1.4 0.99

0.52= -
+ ,

R 12.12 km2.0 1.23
1.11= -

+ , and for the binary tidal deformability of the GW170817 event, 4851.186 211
225L = -

+˜ .
Interestingly, our lower bounds on the radii are in very good agreement with the prediction derived from very
different arguments, namely, the threshold mass. Finally, we provide simple analytic expressions to determine the
minimum and maximum values of L̃ as a function of the chirp mass.

Unified Astronomy Thesaurus concepts: Gravitation (661); Nuclear astrophysics (1129); Fundamental parameters
of stars (555); Stellar interiors (1606); Neutron stars (1108); Neutron star cores (1107); Nuclear physics (2077)

1. Introduction

Gravity compresses matter in the core of a neutron star to
densities a few times larger than the saturation (number)
density of atomic nuclei n0 := 0.16 fm−3. A quantity that
describes the stiffness of matter, a property required to prevent
a static neutron star from collapsing to a black hole, is the
sound speed
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where the pressure p and the energy density e are related by the
equation of state (EOS) and the derivative is considered at
constant specific entropy s. Calculating the EOS of cold matter
at the densities reached in the innermost part of a neutron star is
still an open problem. Causality and thermodynamic stability
imply c0 1s

2  , which poses the minimal requirement the
EOS has to satisfy. Beyond this basic causality requirement,
there are theoretical constraints on the EOS, and therefore on
the sound speed, available in two different regimes. In
particular, at small densities, i.e., n n0, the EOS is well
described by effective field theory models (Hebeler et al. 2013;
Gandolfi et al. 2019; Keller et al. 2021) and the corresponding
sound speed is found to be small c 1s

2 . At larger densities—
much higher than those realized inside neutron stars, i.e.,
n? n0—matter is in a state of deconfined quarks and gluons
and the EOS of quantum chromodynamics (QCD) becomes
accessible to perturbation theory. Because conformal symmetry
of QCD is restored at asymptotically large densities, the sound

speed approaches the value in conformal field theory and
realized in ultrarelativistic fluids c 1 3s

2 = from below.
Between these two limits, the EOS is not accessible by first-
principle techniques and the sound speed is essentially
unknown.
Given this considerable uncertainty, at least three different

scenarios are possible for the sound speed as a function of
density: (i) monotonic and subconformal: c 1 3;s

2 < (ii)
nonmonotonic and subconformal: c 1 3;s

2 < (iii) nonmono-
tonic and subluminal: c 1s

2  . Clearly, scenarios (ii) and (iii)
imply at least one local maximum in the sound speed, which in
(iii) can reach values larger than 1/3. That the sound speed is
small at low densities and approaches the conformal value at
asymptotically large densities from below could be seen as
evidence for an universal bound c 1 3s

2 < , thus favoring
scenario (i) and (ii). However, as already pointed out by
Bedaque & Steiner (2015), this bound is in tension with the
most-massive neutron stars observed and by a number of
counter examples in QCD at large isospin density (Carignano
et al. 2017), two-color QCD (Hands et al. 2006), quarkyonic
matter (McLerran & Reddy 2019; Duarte et al. 2021;
Margueron et al. 2021), models for high-density QCD
(Leonhardt et al. 2020; Braun & Schallmo 2022; Pal et al.
2022), and models based on the gauge/gravity duality (Ecker
et al. 2017; Demircik et al. 2022; Kovensky et al. 2022). All of
these example favor scenario (iii). Finally, astrophysical
measurements of neutron-star masses M 2Me (Antoniadis
et al. 2013; Cromartie et al. 2019; Fonseca et al. 2021) and
theoretical predictions on the maximum (gravitational) mass
(Margalit & Metzger 2017; Rezzolla et al. 2018; Ruiz et al.
2018; Shibata et al. 2019; Nathanail et al. 2021) suggest stiff
EOSs with c 1 3s

2  at densities n0, again selecting the
scenario (iii) as the most likely (see also Moustakidis et al.
2017; Kanakis-Pegios et al. 2020, who study upper limits on cs
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by extending various EOSs with a maximally stiff parameter-
ization at high densities).

In this Letter, we investigate which of these scenarios is the
most natural by exploiting an agnostic approach in which we
build a very large variety of EOSs that satisfies constraints from
particle theory and astronomical observations. More specifi-
cally, we construct the EOSs using the sound-speed para-
meterization introduced by Annala et al. (2020), which avoids
discontinuities in the sound speed as those appearing in a
piecewise polytropic parameterization Most et al. (2018b) (see
also alternatives that guarantee smoothness, like the spectral
approach of Lindblom & Indik 2012, or the Gaussian
parameterizations by Greif et al. 2019). We then compute the
probability density function (PDF) of the sound speed as
derived from the 1.7× 106 EOSs that satisfy all the constraints.
The behavior of the PDF then provides a very effective manner
to determine which of the scenarios mentioned above is the
most natural given (micro)physical and (macro)astrophysical
constraints.

2. Methods

The EOSs we construct are a patchwork of several different
components (see the Appendix for a schematic diagram). First,
at densities n< 0.5 n0 we use a tabulated version of the Baym–

Pethick–Sutherland (BPS) model (Baym et al. 1971). Second,
in the range 0.5 n0< n< 1.1 n0 we construct monotropes of the
form p(n)=K nΓ, where K is fixed by matching to the BPS
EOS and sample uniformly Γ ä [1.77, 3.23] to ensure that the
pressure remains entirely between the soft and stiff EOSs of
Hebeler et al. (2013). Third, between 1.1 n0< n 40 n0 we use
the parameterization method introduced by Annala et al.
(2020), which uses the sound speed as function of the chemical
potential μ as a starting point to construct thermodynamic
quantities. In this way, the number density can be expressed as
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where n1= 1.1 n0 and μ1= μ(n1) is fixed by the corresponding
chemical potential of the monotrope. Integrating Equation (2)
then gives the pressure

p p d n , 31
1

òm m m= + ¢ ¢
m

m
( ) ( ) ( )

where the integration constant p1 is fixed by the pressure of the
monotrope at n= n1. We integrate Equation (3) numerically,
using a fixed number N (3, 4, 5, 7) of piecewise linear segments
for the sound speed of the following form
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where μi and cs i,
2 are parameters of the ith segment in the range

μi� μ� μi+1. The values of cs,1
2 and μ1 are fixed by the

monotrope. Note that we do not sample c 0, 1s i,
2 Î [ ], since this

would lead to a statistical suppression of the subconformal
EOSs with large number of segments. Rather, for each EOS,
we first choose randomly the maximum sound speed
c 0, 1s,max

2 Î [ ] and then uniformly sample the remaining free

coefficients μi ä [μ1, μN+1] and c c0,s i s,
2

,max
2Î [ ] in their

respective domains.

As the final step in our procedure, we keep solutions whose
pressure, density, and sound speed at μN+1= 2.6 GeV are
consistent with the parameterized perturbative QCD result for
cold quark matter in beta equilibrium (Fraga et al. 2014)
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where c1= 0.9008, d1= 0.5034, d2= 1.452, ν1= 0.3553,
ν2= 0.9101, and the renormalization scale parameter Xä [1,
4]. All of the results presented in the main text refer to
1.5× 107 EOSs constructed with N= 7 segments (see the
Appendix for details).
To impose the observational constraints, we compute the

mass–radius relation for each EOS by numerically solving the
Tolman–Oppenheimer–Volkoff (TOV) equations; since we
construct ;102 TOV solutions for each EOS, we can count on
a statistics of ;1.2× 108 nonrotating stellar models. We
impose the mass measurements of J0348+0432 (Antoniadis
et al. 2013; M= 2.01± 0.04Me) and of J0740+6620
(Cromartie et al. 2019; Fonseca et al. 2021;
M= 2.08± 0.07Me) by rejecting EOSs that have a maximum
mass M M2.0TOV < . In addition, we impose the radius
measurements by NICER of J0740+6620 (Miller et al. 2021;
Riley et al. 2021) and of J0030+0451 (Riley et al. 2019; Miller
et al. 2019) by rejecting EOSs with R< 10.75 km at
M= 2.0Me and R< 10.8 km at M= 1.1Me, respectively (see
Figure 6 in the Appendix). Finally, we exploit the detection of
GW171817 by LIGO/Virgo to set an upper bound on the
binary tidal deformability 720L <˜ (low-spin priors; The LIGO
Scientific Collaboration et al 2019). Denoting respectively with
Mi, Ri, and Λi the masses, radii, and tidal deformabilities of the
binary components, where k R Mi i i

2

3 2
5L = ( ) , i= 1,2, and k2 is

the second tidal Love number, we compute the binary tidal
deformability as

M M M M M M

M M
:

16

13

12 12
. 62 1 1

4
1 1 2 2

4
2

1 2
5

L =
+ L + + L

+
˜ ( ) ( )
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( )

For any choice ofM1,2 and R1,2, we then reject those EOSs with
720L >˜ for a chirp mass

M M M M M: 1.186chirp 1 2
3 5

1 2
1 5= + =- ( ) ( ) and q:=

M2/M1> 0.73 as required for consistency with LIGO/Virgo
data for GW170817 (Abbott et al. 2018).

3. Results

In order to build the various PDFs, we discretize the
corresponding two-dimensional space of solutions (e.g., in the
(M,R) space) in 700× 700 equally spaced cells (either linearly
or logarithmically), count the number of curves that cross a
certain cell, and normalize the result by the maximum count on
the whole grid. Because the normalization is made in two
dimensions, slices along a fixed direction do not yield
normalized distributions.
Figure 1 shows the PDF of c2s as a function of the energy

density, with the purple region marking the 95% range of
maximum central energy densities, that is, the central energy
density reached by any EOS by the star with the maximum
mass MTOV. Stated differently, the right edge of the purple
region (vertical purple line) marks our estimate for the largest
possible energy density encountered in a neutron star; in our

2
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sample, we obtain the median e 1064 MeV fmc,TOV 244
399 3= -

+ at
95% confidence.

Note that the PDF shows a steep increase to c 1 3s
2  for

e 500MeV/fm3, thus signalling a significant stiffening of the
EOS at these densities and a subsequent decrease of the sound
speed for larger energy densities. As a result, the PDF
illustrates how a nonmonotonic behavior is most natural for
the sound speed, hence how the physical and observational
constraints favor scenario (iii). Models for quarkyonic matter
(see, e.g., McLerran & Reddy 2019) typically show a peak at
low densities similar to the one in our PDF (Hippert et al.
2021).
The orange line in Figure 1 marks the region of the EOSs

that are subconformal, i.e., with c 1 3s
2 < , at all densities (the

horizontal dashed line that marks c 1 3s
2 = ). Note that around

500MeV/fm3, the orange contour spans a very thin region,
indicating that at these energy densities the subconformal EOSs
have an obvious upper bound c 1 3s

2 < , but also a less-obvious
lower bound c 0.2s

2  . This is an important feature that
explains why these EOSs are so difficult to produce. Indeed, as
revealed by the color map, the number of EOSs that fall in this
region is very small and amounts to only ;5× 10−5 of the
total. The fraction of subconformal EOSs increases slightly if
we restrict the range of densities to those that are admissible for
neutron-star interiors, becoming ;3× 10−4 of the total. The
reason for this increase is that many of the EOSs that are
subconformal for e 300MeV/fm−3, tend to stiffen at larger
energy densities, thus becoming superconformal.

The color map of the PDF in Figure 1 also reveals the
presence of a second peak at large energy densities, close to
where the perturbative QCD boundary conditions are imposed
and reflects artifacts of the parameterization method, which
allows for large variations in the sound speed at very high
energy densities, where cs

2 is expected to be close to the
asymptotic value 1/3. Fortunately, the energy densities where
this second peak appears are far from those expected in the
interior of neutrons stars. It is also possible to reduce the extent

of this second peak by imposing a criterion that filters out EOSs
whose sound speeds vary strongly on small scales as done by
Annala et al. (2020). However, given the very poor knowledge
of the behavior of the sound speed at these regimes, we prefer
to report the unfiltered results. What matters here is that, when
imposed, the filtering has no significant impact on the PDF at
the energy densities that are relevant for stellar interiors (see the
Appendix for a discussion).
Figure 2 shows the corresponding PDF of the pressure as a

function of the energy density with the same conventions as in
Figure 1. In addition, we indicate with a gray line the outer
envelope of all constraint-satisfying solutions, which is very
similar to the one found by Annala et al. (2020). However, an
important difference with respect to Annala et al. (2020), where
no information on the distribution is offered, is that the PDF
reveals that the large majority of EOSs accumulates in a band
that is much narrower than the allowed gray region.
Interestingly, at almost all energy densities, the pressure is
either inside or close to the subconformal region, except around
e≈ 500MeV/fm3. This is an important result as it reveals that
it is very hard to deduce the poor likelihood of subconformal
EOSs when looking at the behavior of the pressure only.
Figure 3 shows the PDF of the masses as a function of the

stellar radii. The outer edges of the distribution show
M M3TOV  and an approximate lower limit for the minimum

radius of R 10.5 km. This is in remarkably good agreement
with the analytic lower bound

 R M M M Mkm 0.88 2.66 8.912- + +( ) ( ) derived
when using the detection of GW170817 and the estimates on
the threshold mass to prompt collapse (Koeppel et al. 2019;
Tootle et al. 2021). The orange line marks again the outer
envelope spanned by subconformal EOSs, whose maximum
mass is M≈ 2.1Me, also seen by Annala et al. (2020, 2022).
This behavior confirms on rather general grounds the tension
between c 1 3s,max

2 < and the observation of stars with
M 2Me, already been pointed out (see, e.g., Alford et al.
2015; Bedaque & Steiner 2015; Tews et al. 2018).

Figure 1. PDF of the sound speed squared as function of the energy density.
The purple region marks the 95% interval of maximum central energy
densities, so that the vertical purple line represents an estimate for the largest
possible energy density in a neutron star. The orange contour marks the region
containing EOSs with c 1 3s

2 < .

Figure 2. PDF of the pressure as function of the energy density. The blue and
green regions mark the uncertainties in pressure in nuclear theory (Hebeler
et al. 2013) and perturbative QCD (Fraga et al. 2014), respectively. The gray
contour encloses all EOSs satisfying the astronomical constraints, while the
purple regions and the orange contour are the same as in Figure 1.
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In the bottom panel of Figure 3 we report slices of the PDF
for two selected masses, namely, 1.4 and 2.0Me. The median
values (dashed lines) and the 95% confidence levels allow us to
estimate the corresponding radii as R 12.42 km1.4 0.99

0.52= -
+ and

R 12.11 km2.0 1.23
1.11= -

+ , respectively. The significant skew in the
distribution for M= 1.4Me is due to the tidal-deformability
constraint that penalizes large radii. Despite the different
method, our estimate for the median of R1.4 is in good
agreement with the piecewise polytropic estimates of Most
et al. (2018a) (12.00< R1.4< 13.45 km) and slightly larger, but
well within the error bars of the estimates by Huth et al. (2021;
see also Abbott et al. 2018; Radice & Dai 2019; Capano et al.
2020; Dietrich et al. 2020; Biswas et al. 2021, for similar
estimates).

Interestingly, we find that none of our constraint-satisfying
EOSs have monotonic sound speeds, as it is required by
scenario (i). In order to check if the scenario (i) is just unlikely
or indeed inconsistent with the constraints, we construct
1.5× 107 EOSs with monotonic sound speed, hence sampling
the sound speed in c 0, 1 3s

2 Î [ ], without imposing a lower
bound on MTOV. We then find that these EOSs are only able to
support a maximal mass M M1.99TOV < and are therefore
excluded by a two-solar-mass bound (see the Appendix for the
PDF of this constraint-violating subset).

We conclude our discussion on the statistical properties of
our EOSs with what arguably is one of the most important
results of this work. More specifically, we report in Figure 4 the
PDF of the binary deformability shown as a function of the
chirp mass. In essence, for any EOS in our sample, we
randomly collect 100 pairs of M1,2, Λ1,2, out of which we
compute chirp and L̃. The results are then binned and color
coded as in the other PDFs. We find this is a particularly
important figure as it relates a quantity that is directly
measurable from gravitational-wave observations, chirp , with
a quantity that contains precious information on the micro-
physics L̃. In this way, we find that the binary tidal

deformability of a GW170817-like event is constrained to be
4831.186 210

224L = -
+˜ , at a 95% confidence level. The lower bound

is a prediction while the upper bound effectively reflects the
constraint imposed on L̃. Furthermore, we have fitted the 99%
confidence contours of the PDF with simple power laws
(dashed black lines) to obtain analytic estimates for the
minimum (maximum) value of L̃ as function of the chirp mass

a b , 7c
min max chirpL = + ˜ ( )( )

where a=−50(−20), b= 500(1800), and c=−4.5(−5.0).
The relevance of Equation (7) is that, once a merging neutron-
star binary is detected and its chirp mass is measured
accurately, it is straightforward to use Equation (7) to readily
obtain a lower and an upper bound on the binary tidal
deformability of the system. This has not been possible so far,
where only upper limits have been set (Abbott et al. 2018).
Finally, to provide a graphical representation of our

statistics, we show in Figure 5 the relative weight of the
various sets into which our total sample of EOSs can be
decomposed, either when subject to the observational con-
straints (dark blue) or when not (light blue). Note that the
heights of the light-blue bars in Figure 5 for scenarios (i)
(fourth bar) and (iii) (first bar) are not the same. In other words,
the unconstrained samples of these scenarios are not equally
populated. This is simply because we sample the sound speed
uniformly, so that the EOSs in which all of the values of c2s
have to fall below 1/3, as required for scenario (i), are
statistically suppressed when compared to the generic scenario
(iii), where c2s can assume values in the full range [0, 1]. What
matters, however, is the relative difference in the constrained/
unconstrained samples (see stellar markers), which is 1 order of
magnitude smaller for scenario (i) than for scenario (iii). This
means that (iii) is statistically preferred over (i) by the
observational data. Furthermore, we note that in our full set
we do not find any EOS with monotonic cs

2 at all densities that
satisfies the observational constraints.

Figure 3. Top: PDF of the mass–radius relation. The orange contour encloses
EOSs with subconformal sound speed (see Figure 1). The dashed black line
reports the lower bound for the radii as computed from considerations on the
threshold mass (Koeppel et al. 2019). Bottom: PDF cuts for stars with mass
M = 1.4 Me and M = 2 Me; the dashed vertical lines mark the median of the
distributions.

Figure 4. Top: PDF of the chirp mass as a function of the binary tidal
deformability. Shown as black dashed lines are analytic fits for the minimum
and maximum values of L̃ for a given chirp mass. Bottom: PDF cut for a binary
with the same chirp mass as in GW170817, M1.186 ;chirp = the red
dashed vertical line marks the median.
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4. Conclusion

We have constructed a large number of viable EOSs and
studied the statistical distributions of the corresponding sound
speed, mass–radius relation, and binary tidal deformability. We
found that a steep rise in the sound speed and a peak c 1 3s

2 >
is statistically preferred and that EOSs with subconformal
sound speeds, i.e., c 1 3s

2  , are possible within the stars, but
also that they are unlikely, although in principle possible, being
only 0.03% of our sample. Hence, it is natural to expect that
c 1 3s

2 > somewhere inside the neutron stars. Furthermore,
imposing subconformality already at the level of the sampling
has allowed us to resolve the range of these EOSs more
accurately and identify a lower bound for the sound speed
c 0.2s

2  around e≈ 590MeV/fm3. Interestingly, we were not
able to find solutions with monotonic sound speed. Exploiting
the statistical robustness of our large sample, we have obtained
estimates at 95% credibility of neutron-star radii for represen-
tative stars with masses of 1.4 and 2.0 solar masses, namely,
R 12.42 km1.4 0.99

0.52= -
+ , R 12.12 km2.0 1.23

1.11= -
+ , and for the binary

tidal deformability of the GW170817, 4851.186 211
225L = -

+˜ .
Remarkably, the very agnostic predictions on the mass–

radius relations emerging from our statistics matches well the
analytic predictions on the minimum stellar radius coming from
very different arguments, namely the threshold mass to
gravitational collapse. New radius and mass measurements,
as well as gravitational-wave detections of binary neutron-star
mergers will allow us to improve these estimates and narrow
down our PDFs further. For example, the discovery of a
neutron star with mass larger than 2.1Me would eliminate the
possibility of subconformal EOSs entirely. Future work will
consider improved constraints at neutron-star densities from
perturbative QCD such as those recently suggested by
Komoltsev & Kurkela (2022). In addition, alternative
approaches to the construction of the EOSs (e.g., piecewise
polytropes, Most et al. 2018b; or spectral
parameterization, Lindblom & Indik 2012) will help determine
a potential bias introduced by our method, which is, however,
expected to be much smaller than the observational
uncertainties.

Note: After the completion of this work, a new mass
measurement of 2.35± 0.17Me has been published for the

pulsar in the binary system PSR J0952-0607 (Romani et al.
2022). This new mass bound has no impact on the main results
and conclusions presented here. While a detailed discussion is
beyond the scope of this paper, the impact of very large
maximum masses on the internal properties of neutron stars has
instead been analyzed (Ecker & Rezzolla 2022).
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by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through the CRC-TR 211 “Strong-
interaction matter under extreme conditions”–project number
315477589–TRR 211.

Appendix
Details about EOS Construction

The material presented here is meant to provide additional
information on some of the details of our calculations and on
their robustness.
We start by showing in Figure 6 some illustrative examples

of our method for the construction of the EOSs. For simplicity,
we concentrate on three representative examples referring to a
generic EOS (i.e., an EOS with no specific behavior of the
sound speed; red solid line), a subconformal EOS (i.e., an EOS
with c 1 3;s

2 < blue solid line), and monotonic sound speed
inside neutron stars (i.e., an EOS with monotonic c2s for
e ec,TOV≈ 1.3 GeV fm−3 in this case; green solid line). More
specifically, the plot on the left shows the sound speed as
function of the energy density; note that the curves are
continuous but with discontinuous derivatives and that the
kinks in the curves mark the matching points of the various
segment used to construct the EOSs. The middle panel shows
the corresponding EOSs, together with the BPS EOS (Baym
et al. 1971) (cyan solid line) that we use at low densities. The
blue and green bands are the uncertainties from nuclear
theory (Hebeler et al. 2013) and perturbative QCD (Fraga et al.
2014), respectively. We also show in gray the outer envelope of
all constraint-satisfying EOSs. Finally, the right panel shows
the corresponding mass–radius curves, together with the outer
envelope and various observational constraints (Antoniadis
et al. 2013; Cromartie et al. 2019; Fonseca et al. 2021; Miller
et al. 2021; Riley et al. 2021) we impose. Note that the gray
contour reproduces the hump at large radii around M≈ 1.2Me,
also seen by Annala et al. (2020), and which was associated to
dynamically unstable solutions by Jiménez & Fraga (2021).
Comparing this part of the contour to Figure 3 in the main text
clearly shows that the solutions in this region are possible but
very unlikely.
Figure 1 of the main text shows the PDF of c2s as a function

of the energy density and a discretized color map. Note that the
steep increase to c 1 3s

2  for e 500MeV/fm3, thus
signalling a significant stiffening of the EOS at these densities
and a subsequent decrease of the sound speed for larger energy
densities. As a visual aid on how this steep increase is
produced, Figure 7 is the same as Figure 1 in the main text, but

Figure 5. Schematic representation of the various sets into which our total
sample of EOSs can be decomposed, either when subject to the observational
constraints (dark blue) or when not (light blue). The ratio between the two
samples is shown with a stellar marker, while the hatched color coding reflects
that used in Figure 1 and in the Appendix.
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with the overlay of the sound-speed curves relative to 1000
different EOSs.

We next consider the impact that the number of segments
employed in the construction of the piecewise linear segments
for the calculation of the sound speed. As pointed out by
Annala et al. (2020), constructing EOSs from piecewise linear
segments for the sound speeds can lead to rather extreme EOSs,
that is, EOSs having rapidly changing material properties,
especially close to where the boundary conditions are imposed.
We also observe this effect in our calculation and find it to be
enhanced when using a large number of segments. In principle,
it is possible to introduce a criterion that discards such solutions
with strongly varying sound speed. For example, Annala et al.
(2020) demanded that the energy densities at two successive
inflection points do not have an excessive relative variation,
i.e., e e e elni i i1- > D+( ) with eln 0.5D = . In this way,
models with steep gradients on small energy scales are filtered
out. Here, however, and as mentioned in the main text, we have
decided not to apply such a filter but provide evidence in this
section that the first peak in the sound speed is a robust feature
that is independent of the number of segments and filtering.

A sufficiently large number of segments is important to
avoid a too coarse description of the sound speed and related
artifacts that we discuss further below. We note that the setup
just described is able to approximate phase transitions very
closely. However, obtaining a “perfect” first-order phase
transition requires that two consecutive draws for the sound
speed are exactly zero. Since we do not explicitly demand that
this happens, perfect first-order phase transitions are very
unlikely in practice, but our results include a number of cases
with very low sound speed at two neighboring matching points.
On the one hand, choosing N to be small could lead to EOSs
that are rather crude and possibly suffer from intrinsic biases.
On the other hand, if N is very large, the whole construction
can be excessively expensive from a computational point of
view. Hence, an optimal choice needs to be found for N. In
Figure 8 we compare the PDFs for different values of the
number of segments with and without filtering. Choosing a low
number of segments (e.g., N= 3, 4) has the effect of
influencing the distribution of the sound speed mostly at
intermediate and high densities close to the perturbative QCD
boundary conditions. This is shown in the first two panels on
the left of Figure 8, which refer to N= 3, 4, respectively; the
third panel from the left refers instead to N= 5 and clearly
indicate that a sufficiently large number of segments is
necessary to avoid artifacts at large energy densities. When
comparing the PDF for N= 5 with that obtained in Figure 1 of
the main text, where N= 7, indicates that the latter is already a
sufficiently large number of segments; indeed, experiments
carried out on a limited set of EOSs with N= 9 has shown that
the differences in the PDFs are very small. Overall, the first
three panels of the figure show that the steep increase of the
distribution beyond c 1 3s

2 at small energy densities is a
robust result that is independent of the number of segments and
filtering. Finally, note that the rightmost panel in Figure 8 refers
to a PDF for N= 5 in which the filtering on the energy-density
gradient is applied. Note how the filtering does modify the
behavior of the PDF at very large energy densities removing
the most extreme EOSs. It remains unclear whether this should
be considered as a more realistic PDF.
Having a different number of segments also impacts the

PDFs of the pressure as a function of the energy density. This is
reported in Figure 9, which shows the outer envelope of
constraint-satisfying solutions for different numbers of seg-
ments and reported with various gray curves. Note that all

Figure 6. Representative examples referring to a generic EOS (red solid line), a subconformal EOS (blue solid line), and monotonic sound speed inside neutron stars
(green solid line). The left plot shows the sound speed as function of the energy density, with the kinks in the curves marking the matching points of the various
segment used to construct the EOSs. The middle panel shows the corresponding EOSs, together with the BPS EOS (Baym et al. 1971; cyan solid line) that we use at
low densities. The blue and green bands are the uncertainties from nuclear theory (Hebeler et al. 2013) and perturbative QCD (Fraga et al. 2014), respectively. Shown
in gray is the outer envelope of all constraint-satisfying EOSs. The right panel reports the corresponding mass–radius curves, together with the outer envelope and
various observational constraints.

Figure 7. The same as Figure 1 in the main text, but with the overlay of the
sound-speed curves relative to 1000 different EOSs.
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PDFs refer to the EOSs that have not been filtered, while the
light-red curve is the result for five segments and a filter on the
relative energy density eln 0.5D = . Note that a parameteriza-
tion with three segments results in a band that is significantly
narrower than for larger numbers of segments. However, a
comparison with Figure 2, which was done with seven
segments, suggests that most of the missed solutions fall
inside the sparsely populated region. Increasing the number of
segments from three to seven clearly shows that already five
segments lead to a well-converged result for the outer
envelope. Finally, inspecting the light-red curve it is possible
to appreciate that the filtering affects mostly the regions close
to the boundary conditions at low and very high energy
densities, leaving the contours in between essentially
unchanged.

We should note that the position of the peak in the sound
speed at neutron-star densities is most probably related to the
boundary conditions set at high densities. Ideally, it would be
interesting to study how the properties of the peak in the sound
speed varies when different boundary conditions in the pQCD
limit are imposed. Doing so is, however, less trivial than it
seems. The actual reason for this peak (see also Gorda et al.
2022) is not so much the conformal value of the sound speed,
but, rather, the values of the QCD pressure and the fact that
they must be approached in a causal manner by our sampled
EOS models. In order to relax these boundary condition one

would need to define a new range for the pressure as well as a
relation between the pressure and the energy density that leads
to the desired value of the sound speed. This is equivalent to
formulating an alternative EOS model that would differ from
the established perturbative QCD result. If such a self-
consistent model were available and was employed in our
analysis, it would most likely move the location at which the
sound speed has to decrease in order to meet the high-density
boundary conditions. Unfortunately, however, this model is not
presently available, at least to the best of our knowledge; hence,
a purely ad hoc change in the high-density regime may lead to
physically inconsistent results.
Another aspect of our analysis that is worth discussing is the

number of EOS that is necessary to use to have a statistically
robust description of the PDFs. As mentioned in the main text,
we have computed at total of 1.5× 107 EOSs and we have
found that such a large number is sufficient to obtain a variance
that is of ∼3% at most. This is shown in Figure 10, which
reports a cut of the PDF for a reference mass of M= 1.4Me
when considering different fractions of our sample. In
particular, the red line provides the section of the PDF when
all EOSs are taken into account and corresponds therefore to
the red line reported in the bottom part of Figure 3 of the main
text. Shown instead with black and blue lines are the cuts when
considering only 10% or 1% of the sample, respectively. Note

Figure 8. PDFs of the sound speed obtained for different values of the number of segments. More specifically, the first three panels from the left refer to N = 3, 4, 5,
respectively. They clearly show that the steep increase of the distribution beyond c 1 3s

2 at small energy densities is a robust result that is independent of the
number of segments and filtering. The rightmost panel refers instead to a PDF for N = 5 in which the filtering on the energy-density gradient is applied. Note how the
filtering does modify the behavior of the PDF at very large energy densities removing the most extreme EOSs.

Figure 9. Outermost contours of constraint-satisfying EOSs. Gray curves are
obtained from unfiltered sampling with three, four, five, and seven segments;
the light-red contour refers to the five-segment EOS after filtering.

Figure 10. PDF of stellar radii at a fixed mass M = 1.4 Me for different
fractions of our sample. Clearly, having a large number of EOSs decreases the
size of the fluctuations; however 10% of the sample is already sufficient to
obtain robust estimates of the median.
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that having only 10% of the EOSs in the sample is sufficient to
obtain robust estimates of the median.

We conclude this Appendix with a discussion focused on the
properties of the EOSs that lead to sound speeds that are
monotonic. As mentioned in the main text, because these EOSs
are rather rare from a statistical point of view, it is convenient
to construct our ensemble by sampling the sound speed not
across all of its possible values, i.e., c0 1s

2  , but only in the
relevant regime, i.e., c0 1 3s

2  . In this way, it was
possible to produce a separate and rich ensemble of
1.5× 106 EOSs with sound speed increasing monotonically
and for which no observational constraints on the maximum
mass were imposed.

These results are summarized in Figure 11, whose two
panels show the corresponding PDFs for the sound speed as a
function of the energy density (left panel) and of the mass as a
function of the stellar radius (right panel). In this respect, they
can be compared with Figures 1 and 3 of the main text, where,
however, the green contour is now used to mark the entire span
of the PDFs. Interestingly and importantly, the PDFs reveal that
the largest mass that can be sustained in this case is M� 1.99
Me.
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