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Abstract 
 

In this paper, the estimators of variance components are derived of two-way nested random model when 
the problem of missing information exists using combination between Modified Minimum Variance 
Quadratic Unbiased Estimation (MMIVQUE) and Modified Minimum Variance Quadratic Unbiased 
Estimation (MMIVQUE (0)) methods that is called MMIV(MIV(0)) method. 
 

 
Keywords: MINQUE; missing information; MIVQUE; variance components. 
 

1 Introduction 
 
The problem of estimation of variance components in random and mixed linear models has received much 
attention in the statistics literature. There are several approaches to this problem, such as the analysis of 
variance (ANOVA) estimator. It has been common practice estimate the variance components by ANOVA 
for balanced data. The ANOVA estimates are obtained by equating observed and expected mean squares in 
the analysis and solving the resulting equation for the estimators. These estimators are unbiased and can be 
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expressed as quadratic functions of the observations. The main desirable feature of these estimators is their 
simple computation. Under normality and balanced data, they have minimum variance among all unbiased 
estimators. However they can yield negative estimates and even under normality assumptions their 
distributions are intractable. For unbalanced data, the choice of appropriate quadratic forms poses a difficult 
problem. The estimates obtained may be not unbiased [1]. 
 
Rao [2] suggested a method of estimation “MINQUE” that does not require the normality assumption for the 
estimation of variances. He [3] proposed a method of estimation that called MIVQUE, Minimum Variance 
Quadratic Unbiased Estimation. Swallow and Monahan [4] made a comparison between ANOVA, MLE, 
REML, and MINQUE methods through running one way model. 
 
Subramani [5] suggested a modification on the computational aspects of MIVQUE of variance components 
in mixed linear models. He introduced two modified MIVQUE (MIVQUE I and MIVQUE II). He estimated 
variance components in unbalanced one-way random model by Modified MIVQUE and compared between 
MIVQUE I, MIVQUE II, MIVQUE based on different optimality criteria.  
 
Most standard statistical methods have been designed to analyze data sets with no missing values. 
Consequently, the researcher has two options (a) to delete those cases which have missing data, or (b) to fill-
in the missing values with estimated values. Thus, a data set is created containing no missing values (empty 
cells). Typically, the data set is presented in a rectangular table where rows indicate cases, observations, or 
subjects, and columns indicate variables measured on each unit. 
 
In regression analysis, independent variables may have missing values in practice. It is also likely that 
information (which group or subgroup an observation belongs to) in the analysis of variance is missing. The 
information in variance component model has the same importance as the independent variables in 
regression analyses. Without the information, the variance components in the model cannot be separated 
from one another (i.e. it may make some variance components inestimable) [6].  
 
The meaning of incomplete (missing) information is different from the meaning of missing values. Missing 
values related to the losing of the observation while missing information related to the losing of location of 
the observation. This means that the value of the observation is known which could happen because it may 
be not recorded or lost for any other reasons [7].  
 
Missing information has three types completely missing information, partially missing information and not 
at all on any observation.  
 

1. Completely missing information 
    No observation in the main group has subgroup information. 
2. Partially missing information  
    Some of the observations in the main group have missing subgroup information. 
3. Not at all on any observation in the main group is missing [6].  

                                                                               
Song and Shulman [6] estimated the variance components for the data with missing nesting information in 
the two-stage unbalanced nested random model. They combined sum of squares for the data with missing 
nesting information with the sum of squares for the data with complete nesting information linearly. 
Prespecified weights are used for the combination. Different estimates are obtained by using different 
weights. Variances and covariances of these estimators are derived and used to compare these estimators. 
Saleh and El Sheikh [8] modified the analysis of variance method and the combined symmetric sums with 
the analysis of variance method for estimation of the variance components of three-stage unbalanced nested 
random models for the data with complete missing nesting information. By a simulation study, they 
compared the bias and the mean squares errors of the estimates of variance components of the five methods 
of estimation namely: ANOVA method (Henderson’s method 1), Modified ANOVA method, combined 
analysis of means with ANOVA method, Combined symmetric sums method with ANOVA method, 
Combined symmetric sums method with modified ANOVA method. 
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The paper is organized as follows: The second section concerns with the Modified MIVQUE (I) method 
introduced by Subramani [5]. The third section illustrates the proposed estimators for data with completely 
missing information in case of two-way nested random model. The fourth section illustrates simulation study 
to compare ANOVA and MMIV (MIV(0)) methods.  
 

2 Minimum Variance Quadratic Unbiased Estimation (MIVQUE I) 
 
Assume the model: 
 

Y = Xβ + Z�δ� + Z�δ� + ⋯ + Z�δ�                                                                                                   (1) 
 
where Y is an N × 1 vector of observations, N  is the sample size    
X is a N × s matrix with known constants, 
β is a s× 1- vector of fixed (unknown) parameters, 
Z� is a N × c� matrix with known constants,	i= 1,… ,d. (Z� = I,c� = N) 
δ� is a c�× 1-vector of random variables. (δ� = e) 
 

Assume that δ� is random variable with zero mean value and dispersion matrix σ�
�I��. Further,	δ� and δ� are 

uncorrelated.  
 
Model (1) can be expressed in a compact form as: 
 

Y = Xβ + Zδ																																																																																																																																																								(2) 
 
where Z = (Z� ∶	Z� ∶⋯ ∶Z�) and δ = (δ� ∶	δ� ∶⋯ ∶δ�).  
 

E(Y)= Xβ  and D(Y)= V = ∑ σ�
�V�

�
���  where V�= Z�Z�

�. 
 

D(Y) is called the dispersion matrix and the parameters σ�
�,… ,σ�

�  are the unknown variance components 
whose values should be estimated [5].  
 
Subramani [5] developed the estimation of variance components based on Rao [2] approach. Instead of 
dealing with one linear combination, he decided to estimate a set of linear combinations of variance 

components ∑ ρ
��
σ�

�
���   through a set of quadratic functions Y�A�Y	 [A�	is	a	symmetric	matrix		and	ρ��=

Tr(A�V�)].  
 

He [5] claimed that estimating variance components under normality obtained by solving the following 
equations: 
 

�
Tr(A�V�)

⋮
Tr(A�V�)

…
⋱
⋯

Tr(A�V�)
⋮

Tr(A�V�)
�

�×�

�
σ�
�

⋮
σ�
�
�

�×�

= �
Tr(A�W )

⋮
Tr(A�W )

�

�×�

																																									(3) 

 

He [5] introduced different formulas of A� to obtain MIVQUE(I). The formulas of A�	(i= 1,2,… ,d) 	have 
the following form: 
 

A�= V���I− P��� where P�� = U�(U�
�V��U�)

�U�
�V��. U� has a variety of choices, 

 
i. U� = X,U� = [X Z�],U� = [X Z�],… ,U� = [X Z���] 

ii. U� = X,U� = [X Z�],U� = [X Z� Z�],… ,	 
U� = [X Z� Z� … Z���] 

iii. U� = X,U� = [X X Z�],U� = [X X Z� Z�],… , 
U� = [X X Z� … Z���]	 

(4) 
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where	(U�
�V��U�)

�  is the generalized inverse of U�
�V��U� 

 

For the case (ii), he derived the estimators, their variances and covariance matrix in the unbalanced one-way 
random model. The resulting method are referred to as MIVQUE I. 
 

The proposed estimators of variance components are derived by replacing A� in eq. (3) by A� for case (iii) in 
eq. (4).  
 

So the steps of MIVQUE method: 1- Selecting a symmetric matrix A�, 2- Solving the equation (3), 3-obtain 
the estimators of MIVQUE method. 
 

3 Estimation of Variance Components for data with Completely 
Missing Information  

 
In this section, the variance components will be estimated for data with completely missing information by 
combination between modified MIVQUE I and modified MIVQUE I(0). 
 
Consider the two- way nested random model 
 

Y���= η + γ
�
+ β

�(�)
+ e�(��)                                                                                                               (5) 

 
i= 1,2,… ,S,j= 1,2,… ,D�,k = 1,2,… ,n�� 

 

where Y��� is the k�� observation at the j��level of factor β within the i�� level of factor γ. 

	η is the general mean. 
γ
�
 , β

��
and e��� are mutually independent random variables with zero means and variances σγ

�  , σβ
�and σ�

� 

respectively. The variance components to be estimated are σγ
� , σβ

�	and σ�
�.  

 
So the model (5) can be written in matrix form as: 
 

Y	= 	Xη	+	T�γ	+ T�β +	T�e                                                                                                          (6) 
 

where Y is an N	× 	1 vector of observations X =	1�∗�,N = ∑ ∑ n��
��
���

�
���  

 

  1���×� 0 0 0 0  

 0 ⋱ 0 0 0 

�� = 0 0 1��� �×� 0 0 

 0 0 0 ⋱ 0 

 0 0 0 0 1��� �×�
 

 
,T� = I�, 

  1
∑ ���
� �
��� ×�

 0 0 0 0  
 
 
 
 
 
 
 
 

 0 1
∑ ���
� �
�� � ×�

 0 0 0 

�� = 0 0 ⋱ 0 0 

 0 0 0 ⋱ 0 

 0 0 0 0 1
∑ ���
� �
���

×�
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with E(Y	)= 	Xη and D(Y	)= V =	V�σγ
� + V�σβ

� + V�σ�
� 

 
, V�= T�T�

�. 

V� = T�T�
� = �

J� 0 … 0
0 J� … 0
⋮
0

⋮
0

… ⋮
… J�

�=�J�

��

���

 

V� = T�T�
� =

⎣
⎢
⎢
⎡
K��� 0 … 0

0 K��� … 0

⋮
0

⋮
0

⋱ ⋮
… K��� �⎦

⎥
⎥
⎤

= K 

 

where 	J�	denote	∑ n��
��
��� × ∑ n��

��
��� 	matrix	consisting	of	1′s. 

          	K���	denote	n��× n��	matrix	consisting	of	1
′s	[1]. 

 
Assume that the total number of the main group will be: S= S′ + S′′.  
 
S′ be the numbers of the main groups for the data with complete nesting information and S′′ be the numbers 
of the main groups for the data with completely missing subgroup nesting information. Assume that all 

D�
′s	and	n��

′ s	in Model (4.1) are known. 

 
Variables and coefficients without prime-notation or with single or double prime notations will be defined as 
follows: 
 
If there is a notation without prime then we do not specify the range for i if the variable or coefficient is 
summed over i. 
 
The same notation with a single prime (double primes) is then defined as the same quantity summed over i 
from, 1 to S′ (from, S′ + 1,… ,S, respectively). 
 
Steps of estimation: 
 

1. Estimation of variance components for S′ groups. (data with complete information) 
2. Estimation of variance components for S′′ groups. (data with missing information) 
3. Pre-specified weights will be used to combine data with complete information and missing 

information. 
 
According to steps of MMIVQUE method, the estimators of variance components are derived when the 
matrix	A� for case (iii) in eq.(4).  
 
For model (6), the matrix 	A� is defined as: 
 

	A�= V���I− P���, i= 1,2,3 

 
where P�� = U�(U�V

��U�)
�U�

�V��, 

 

U� = X,U� = [X X T�],U��� = [X X T� T�] 
 

V�� =
1

σ�
�
I− �B�

��

���

− �
σγ
�

1 + σγ
� ∑

���

�σ�
�����σβ

��

��
���

��

���

C�																																														 
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where 

B�=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

σβ
�

σ�
��σ�

� + n��σβ
��
K���×��� 0 … 0

0 0 … 0

⋮
0

⋮
0

… ⋮

…
σβ
�

σ�
��σ�

� + n���σβ
��
K��� �×��� �⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

and 

C�=

⎣
⎢
⎢
⎢
⎢
⎡

1

�σ�
� + n��σβ

��

⋮
1

�σ�
� + n���σβ

��⎦
⎥
⎥
⎥
⎥
⎤

�
1

�σ�� + n��σβ
��

…
1

�σ�� + n���σβ
��
� 

 
By using MMIVQUE method, the variance components σγ

� , σβ
�and σ�

�	will be replaced with the prior values 

α� , α�	and α�	respectively. So the dispersion matrix will take the following form: 
 

V∗ = α�V� + α�V� + α�V�	 
 
So the inverse V�� will be replaced with: 
 

V∗(��) =
1

α�
I− �B�

��

���

− �
α�

1 + α� ∑
���

�α�����α��

��
���

��

���

C�																																		 

 

Step (1): data with missing information by MMIVQUE I: 
 

For model (6), the matrix A�
′ ,i= 1,2,3	for data with complete information is: 

 

A�
′ = V(�)

∗(��)
− h′ �V(�)

∗(��)
X′X′�V(�)

∗(��)
�																																							 

 

A�
′ = V(�)

∗(��)
−

⎣
⎢
⎢
⎡

	�
1

h��1+ α� ∑
���

α�����α�

��
���

�
�

��′

���

C�

⎦
⎥
⎥
⎤

									 

 

A�
′ = V(�)

∗(��)
− ��F�

��′

���

− 	�
α�

�1 + α� ∑
���

α�����α�

��
��� �

��′

���

C��	 

 
where  

F�=

⎣
⎢
⎢
⎢
⎢
⎡

1

n��(α� + n��α�)
K���×��� 0 … 0

0 0 … 0

⋮
0

⋮
0

… ⋮

…
1

n����α� + n���α��
K��� �×��� �⎦

⎥
⎥
⎥
⎥
⎤

 

 

h′ =
1

∑ h�
�′
���
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The resulting equations are: 
 

�

Tr(A�
′ V�

′)

Tr(A�
′ V�

′)

Tr(A�
′ V�

′)

Tr(A�
′ V�

′ ) Tr(A�
′ V�

′)

Tr(A�
′ V�

′ ) Tr(A�
′ V�

′)

Tr(A�
′ V�

′ ) Tr(A�
′ V�

′)

��

σγ
�

σβ
�

σ�
�

�= �

Q�
′

Q�
′

Q�
′

�																																																	 

 

where Q�
′ = Tr�A�

′W �,W ′ = Y′Y′�,i= 1,2,3 
 

Q�
′ =

⎣
⎢
⎢
⎡1

α�
���Y���

�

�

���

��

���

�′

���

− ��
α�

α�a��
Y��.
�

��

���

�

���

− ��
α�

a��
�b�

Y��.
�

��

���

�′

���

− ���
α�

a��b�a��
Y��.Y��.

��

���
���

��

���

�′

���
⎦
⎥
⎥
⎤

− h′

⎣
⎢
⎢
⎡1

α�
���Y���

�

���

��

���

�′

���

− ��
n��α�

α�a��
Y��.

��

���

�′

���

− ���
α�n��

b�
�
1

a��
� Y��. +

1

a��a��
Y��.�

��

�� �
���

��

���

�′

���
⎦
⎥
⎥
⎤
�

		 

 

Q�
′ =

⎣
⎢
⎢
⎡1

α�
���Y���

�

�

���

��

���

�′

���

− ��
α�

α�a��
Y��.
�

��

���

�′

���

− ��
α�

a��
�b�

Y��.
�

��

���

�′

���

− ���
α�

a��b�a��
Y��.Y��.

��

���
���

��

���

�′

���
⎦
⎥
⎥
⎤

−

⎣
⎢
⎢
⎡

��
1

h�a��
�b�

� Y��.
�

��

���

�′

���

+���
1

h�a��b�
�a��

Y��.Y��.

��

���
���

��

���

�′

���
⎦
⎥
⎥
⎤

	 

 

				Q�
′ =

1

α�
����Y���

�

�

���

��

���

�′

���

− ��
1

n��
Y��.
�

��

���

�′

���

�	 

 
and 

Tr(A�
′ V�

′)=��
n��

a��b�

��

���

�′

���

− h′�(h�)
�

�′

���

	 

Tr(A�
′ V�

′)= ���
n���a��b�− n��α��

a��
�b�

��

���

�′

���

�− h′���n��

��

���
���

��

���

�
n���b�a��− n��α��

a��
�b�

� −
n��
�α�

a��b�
�a��

��

�′

���

 

Tr(A�
′ V�

′)=��n��

��

���

�′

���

�
1

α�
−

α�
α�a��

−
α�

b�a��
��− h′���n��

��

���
���

��

���

�
�b�a��− n��α��

a��
�b�

� −
n��α�

a��b�
�a��

��

�′

���

 

Tr(A�
′ V�

′)= ���
n���a��b�− n��α��

a��
�b�

��

���

�′

���

�− ��
n��
�

a��
�b�

�h�

��

���

�′

���

							 

Tr(A�
′ V�

′)=��n��

��

���

�′

���

�
1

α�
−

α�
α�a��

−
α�

b�a��
��− ��

n��

a��
�b�

�h�

��

���

�′

���

					 

Tr(A�
′ V�

′)=��n��

��

���

�′

���

�
1

α�
−

α�
α�a��

−
α�

b�a��
��− ���

�a��b�− n��α��

a��
�b�

��

���

�′

���

� 
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Since  
 

Tr(A�
′ V�

′)σγ
� + Tr(A�

′ V�
′ )σβ

� + Tr(A�
′ V�

′)σ�
� = Q�

′                                                                               (7) 

 
Tr(A�

′ V�
′)σβ

� + Tr(A�
′ V�

′)σ�
� = Q�

′                                                                                                       (8) 

 
Tr(A�

′ V�
′)σ�

� = Q�
′                                                                                                                               (9) 

 
By solving eq.(7), (8) and (9), the estimators of variance components for data with complete information can 
be given as follows: 
 

σ��
� =

Q�
′

Tr(A�
′ V�

′)
																																																																		 

σ�β
� =

Q�
′ − Tr(A�

′ V�
′ )σ��

�

Tr(A�
′ V�

′)
																																																				 

σ�γ
� =

Q�
′ − Tr(A�

′ V�
′)σ��

� − Tr(A�
′ V�

′ )σ�β
�

Tr(A�
′ V�

′)
																									 

 
Step (2): data with missing information by MMIVQUE I(0): 
 
The estimators of variance components are derived by MMIVQUE I(0) for data with completely missing 
information i.e it is assumed that the initial values α� = α� = 0 and α� = 1. 
 

For model (6), the matrix A�
′′,i= 1,2,3	for data with completely missing information is: 

 

A�
′′ = V(�)

∗(��)
− h′′ �V(�)

∗(��)
X′′X′′�V(�)

∗(��)
�																																												 

 

A�
′′ = V(�)

∗(��)
−

⎣
⎢
⎢
⎡

	�
1

h��1+ α� ∑
���

α�����α�

��
���

�
�

��

���′��

C�

⎦
⎥
⎥
⎤

															 

 

A�
′′ = V(�)

∗(��)
− � � F�

��

���′��

− �
α�

�1 + α� ∑
���

α�����α�

��
��� �

��

���′��

C��	 

where  
 

V(�)
∗(��)

=
1

α�
I�′′ − � B�

��

���′��

− �
α�

1 + α� ∑
���

�α�����α��

��
���

��

���′��

C�																								 

h′′ =
1

∑ ∑ n��
��
���

�
���′��

 

 
The resulting equations are: 
 

�

Tr(A�
′′ V�

′′)

Tr(A�
′′ V�

′′)

Tr(A�
′′ V�

′′)

Tr(A�
′′ V�

′′) Tr(A�
′′ V�

′′)

Tr(A�
′′ V�

′′) Tr(A�
′′ V�

′′)

Tr(A�
′′ V�

′′) Tr(A�
′′ V�

′′)

��

σγ
�

σβ
�

σ�
�

�= �

Q�
′′

Q�
′′

Q�
′′

�																			 
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where 
 

Q�
′′ = �� ��Y���

�

���

���

��

���

�

���′��

�− h′′ �� ��Y���

���

���

��

���

�

���′��

�

�

				 

 

Q�
′′ = �� ��Y���

�

���

���

��

���

�

���′��

�− ��
1

n�.
Y�..
�

�

���′��

�																						 

 

Q�
′′ = ����Y���

�

���

���

��

���

�′′

���

− ��
1

n��
Y��.
�

�

���

�′′

���

�																										 

 
And 
 

Tr(A�
′′ V�

′′)= � �n��

��

���

�

���′��

− h′′ � ��n��

��

���

�

�
�

���′��

	 

 

Tr(A�
′′ V�

′′)= �� �n��

��

���

�

���′��

�− h′′ � �n��
�

��

���

�

���′��

				 

 

Tr(A�
′′ V�

′′)= � �n��

��

���

�

���′��

− h′′ � �n��

��

���

�

���′��

								 

 

Tr(A�
′′ V�

′′)= �� �n��

��

���

�

���′��

�− � �
n��
�

∑ n��
��
���

��

���

�

���′��

 

 

Tr(A�
′′ V�

′′)= � �n��

��

���

�

���′��

− � �
n��

∑ n��
��
���

��

���

�

���′��

										 

 

Tr(A�
′′ V�

′′)= � �n��

��

���

�

���′��

− �� D�

�

���′��

�																							 

 
Since  
 

Tr(A�
′′ V�

′′)σγ
� + Tr(A�

′′ V�
′′)σβ

� + Tr(A�
′′ V�

′′)σ�
� = Q�

′′                                                                             (10) 

 

Tr(A�
′′ V�

′′)σβ
� + Tr(A�

′′ V�
′′)σ�

� = Q�
′′                                                                                                     (11) 

 
Tr(A�

′′ V�
′′)σ�

� = Q�
′′                                                                                                                             (12) 

 
Step (3): Combination the data with complete information and completely missing information: 
 
Pre-specified weights will be used to combine (Q�

′ &Q�
′′  ) and (Q�

′ &Q�
′′ ) as: 
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Tr(A�
′ V�

′)σ��
� = Q�

′ 																																																																																																																																												(13) 
 

w�Q�
′ + (1 − w�)Q�

′′ = w��Tr�A�
′ V�

′�σ�β
� + Tr�A�

′ V�
′ �σ��

�� + (1 − w�)�Tr�A�
′′ V�

′′�σ�β
� + Tr�A�

′′ V�
′′�σ��

��													(14) 
 
w�Q�

′ + (1 − w�)Q�
′′  

= w��Tr(A�
′ V�

′)σ�γ
� + Tr(A�

′ V�
′)σ�β

� + Tr(A�
′ V�

′)σ��
�� + (1 − w�)�Tr(A�

′′ V�
′′)σ�γ

� + Tr(A�
′′ V�

′′)σ�β
� + Tr(A�

′′ V�
′′)σ��

��																											(15) 
 
By solving eq.(13), (14) and (15), the estimators of variance components are: 
 

σ��
� =

Q�
′

Tr(A�
′ V�

′)
																																																																																																																							 

 

σ�β
� =

w�Q�
′ + (1 − w�)Q�

′′ − [w�Tr(A�
′ V�

′ )+ (1 − w�)Tr(A�
′′ V�

′′)]σ��
�

[w�Tr(A�
′ V�

′ )+ (1 − w�)Tr(A�
′′ V�

′′)]
																				 

 

σ̇γ
� =

w�Q�
′ + (1 − w�)Q�

′′ − P�σ��
� − P�σ�β

�

[w�Tr(A�
′ V�

′)+ (1 − w�)Tr(A�
′′ V�

′′)]
		 

 
Where 
 

P� = [w�Tr(A�
′ V�

′)+ (1 − w�)Tr(A�
′′ V�

′′)], 
P� =	[w�Tr(A�

′ V�
′)+ (1 − w�)Tr(A�

′′ V�
′′)] 

 

4 Simulation Study of Two –Way Nested Random Model 
 
In this section, the variance components are estimated for unbalanced two-way nested random model under 
normality assumption in case of data with completely missing information through a simulation study by 
MMIV(MIV(0)) and ANOVA methods and to compare the estimates using mean squared error, bias, and 
probability of getting negative estimates.  
 
A numerical comparison for two-way nested random model requires a n-pattern, true values for the variance 
components σγ

�,σβ
�  and σ�

� , a priori values α�,α�  and α�  for the variance components σγ
�,σβ

�  and σ�
� 

respectively, percentage of completely missing information and the weights.  
 
As stated by Song and Shulman [6], the weights can be simply set to a constant or derived by some optimal 
procedures. They presented four procedures of weights: 
 

1. Set w� = w� = 1. This gives the estimates using the data with complete nesting information only. 

2. Set w� = w� =
�

�
. This method gives equal weight to the sums of squares associated with both the 

complete and the missing nesting information. 
3. Select w�and w�, that minimize the variances of the combined sums of squares. 

4. Select w�and w�, that minimize the variances of the derived estimates: V(σ�β
�) and V(σ�α

�), respectively. 

 
In this section, the procedures (2, 3, and 4) are considered through a simulation study. 
 
By simulation study, 5000 independent random sample are generated. It is assumed that the sample size is 
60 observations, number of main groups S= 8, number of subgroups and sample size of each subgroup as 
given in Table 1, the true values σ�

�,σβ
�,σγ

� as given in Table 2. Percentage of missing information levels 

25%, 50%, 75% and different weights (w�,w�) are considered.  
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Table 1. The number of subgroups for unbalanced two-way nested random model 
 

�� �� �� �� �� �� �� �� 
n�� = 3 n�� = 3 n�� = 3 n��= 5 n��= 3 n��= 2 n��= 3 n��= 3 
n�� = 5 n�� = 2 n�� = 4 n��= 4 n��= 2 n��= 4 n��= 2 n��= 2 
 n�� = 2  n��= 2  n��= 2  n��= 4 

 
Table 2. Variance components configurations used in the simulation of two-way nested random model 

 

��
� ��

� ��
� 

0.1 0.1 1 
1 0.1 1 
2 0.1 1 
0.1 1 1 
1 1 1 
2 1 1 
0.1 2 1 
1 2 1 
2 2 1 

 
Table 3. Comparison of ANOVA and MMIV(MIV(0)) estimates for unbalanced two-way nested 

random model-25% data with completely missing information based on compound MSE, compound 
absolute Bias and prob. of getting Negative estimates 

 

��
� ��

� �� �� ANOVA MMIV(MIV(0)) 

Compound 
MSE 

Compound 
absolute 
Bias 

Prob. 
Negative 
estimates 

Compound 
MSE 

Compound 
absolute 
Bias 

Prob. 
Negative 
estimates 

0.1 1 0.5 0.5 1.03 1.17 0.86 2.15 1.4 0.53 

  0 0.48 0.96 1.11 0.8 1.23 1.23 0.67 

  0 0.89 0.9 1.05 0.82 1.3 1.14 0.72 

 2 0.5 0.5 4 2.24 0.85 2.97 1.76 0.54 

  0 0.48 3.6 2.1 0.8 4.09 2.3 0.69 
  0 0.89 3.55 2.04 0.82 3.7 1.98 0.72 

1 0.1 0.5 0.5 0.74 0.91 0.86 4.5 2.35 0.52 

  0.02 0.27 0.82 0.97 0.81 0.91 0.98 0.84 

  0.1 0.57 0.8 0.97 0.82 1.16 1.19 0.6 

 2 0.5 0.5 4.4 2.69 0.85 3.84 2.32 0.57 

  0 0.27 4.34 2.64 0.81 5.54 2.97 0.87 

  0 0.57 4.1 2.55 0.81 4.2 2.55 0.66 

2 0.1 0.5 0.5 3.11 1.82 0.86 6.82 3.06 0.54 

  0 0.24 3.26 1.9 0.8 3.17 1.8 0.87 

  0.01 0.5 3.45 1.98 0.8 3.43 1.97 0.67 

 1 0.5 0.5 3.84 2.55 0.86 5.42 2.78 0.57 

  0 0.24 3.88 2.48 0.8 4.32 2.61 0.88 

  0 0.5 3.96 2.54 0.8 3.96 2.49 0.68 
 
According to simulation study for unbalanced two-way nested random model, a number of conclusions are 
drawn from the results for all tables of this model which are summarized in the following points: 
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25% data with completely missing information: 
 
 In case of unbalanced two-way nested random model, it does not matter computing the estimates of 

σ�
� for MMIV(MIV(0)) and ANOVA methods because they are the same.  

 It is reasonable to note that the compound MSE of ANOVA method is lower than MMIV(MIV(0)) 
method. 

 The compound absolute bias of ANOVA method is lower than MMIV(MIV(0)) method. 
 According to the probability of getting negative estimates, MMIV(MIV(0)) method is better than 

ANOVA method. 
 

Table 4. Comparison of ANOVA and MMIV (MIV(0)) estimates for unbalanced two-way nested 
random model-50% data with completely missing information based on compound MSE, compound 

absolute Bias and prob. of getting negative estimates 
 

��
� ��

� �� �� ANOVA MMIV(MIV(0)) 
Compound 
MSE 

Compound 
absolute Bias 

Prob. 
negative 
estimates 

Compound 
MSE 

Compound 
absolute Bias 

Prob. 
negative 
estimates 

0.1 1 0.5 0.5 1.11 1.23 0.86 1.06 1.13 0.61 
  0.5 0.72 1.03 1.17 0.85 0.82 0.9 0.54 
  0.56 0.92 1 1.14 0.85 0.7 0.88 0.57 
 2 0.5 0.5 4.2 2.34 0.87 4.1 2.29 0.68 
  0.52 0.72 4.1 2.27 0.85 3.46 2.09 0.57 
  0.57 0.92 3.92 2.19 0.84 2.5 1.65 0.59 
1 0.1 0.5 0.5 0.7 0.87 0.87 0.95 1.09 0.62 
  0.41 0.48 0.7 0.86 0.86 0.8 0.99 0.65 
  0.46 0.58 0.71 0.88 0.86 0.88 1.05 0.6 
 2 0.5 0.5 4.5 2.72 0.86 4.46 2.67 0.72 
  0.49 0.48 4.52 2.73 0.86 4.57 2.7 0.73 
  0.54 0.58 4.47 2.71 0.86 4.24 2.6 0.69 
2 0.1 0.5 0.5 2.93 1.74 0.87 3.03 1.86 0.68 
  0.4 0.43 2.9 1.71 0.88 2.9 1.75 0.75 
  0.45 0.5 2.91 1.73 0.86 2.94 1.8 0.7 
 1 0.5 0.5 3.66 2.48 0.86 3.56 2.35 0.72 
  0.44 0.43 3.59 2.44 0.88 3.7 2.4 0.78 
  0.49 0.5 3.61 2.45 0.87 3.59 2.35 0.72 

 
50% data with completely missing information: 
 
 In case of unbalanced two-way nested random model, it does not matter computing the estimates of 

σ�
� for MMIV (MIV(0)) and ANOVA methods because they are the same.  

 When σγ
� = 0.1, the compound MSE of ANOVA method is lower than MMIV(MIV(0)) method. 

Also, The compound absolute bias of ANOVA method is lower than MMIV (MIV(0)) method. 
 ANOVA and MMIV (MIV(0)) methods approach at high level of true values of variance components. 
 According to the probability of getting negative estimates, MMIV (MIV(0)) method is better than 

ANOVA method. 
 
75% data with completely missing information: 
 
 In case of unbalanced two-way nested random model, it does not matter computing the estimates of 

σ�
� for MMIV (MIV(0)) and ANOVA methods because they are the same.  

 The compound MSE of ANOVA method is lower than MMIV(MIV(0)) method. Also, the compound 
absolute bias of ANOVA methods are lower than MMIV(MIV(0)) method. 
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 According to the probability of getting negative estimates, MMIV(MIV(0)) method is better than 
ANOVA and methods. 

 
Table 5. Comparison of ANOVA and MMIV (MIV(0)) estimates for unbalanced two-way nested 

random model-75% data with completely missing information based on compound MSE, compound 
absolute Bias and prob. of getting negative estimates 

 

��
� ��

� �� �� ANOVA MMIV(MIV(0)) 
Compound 
MSE 

Compound 
absolute 
Bias 

Prob. 
negative 
estimates 

Compound 
MSE 

Compound 
absolute Bias 

Prob. 
negative 
estimates 

0.1 1 0.5 0.5 1.55 1.47 0.89 1.77 1.53 0.85 
  0.98 0.9 1.11 1.21 0.79 18.44 3.31 0.55 
  0.9 0.96 1.13 1.21 0.83 1.54 1.21 0.56 
 2 0.5 0.5 2.16 2.69 0.89 5.66 2.81 0.88 
  0.99 0.9 4.01 2.26 0.79 48.13 5.12 0.61 
  0.95 0.96 4.09 2.27 0.82 6.67 2.36 0.56 
1 0.1 0.5 0.5 0.7 0.85 0.9 0.78 0.89 0.86 
  0.96 0.79 0.72 0.89 0.79 9.55 2.71 0.59 
  0.84 0.69 0.67 0.85 0.82 1.16 1.16 0.67 
 2 0.5 0.5 5.36 2.98 0.9 5.98 3.13 0.9 
  0.99 0.79 4.38 2.66 0.79 64.24 6.02 0.67 
  0.97 0.69 4.65 2.75 0.78 18.1 3.88 0.71 
2 0.1 0.5 0.5 2.52 1.54 0.89 2.59 1.57 0.87 
  0.98 0.77 2.83 1.73 0.78 32.48 4.82 0.64 
  0.92 0.58 2.68 1.64 0.81 2.47 2.42 0.69 
 1 0.5 0.5 3.56 2.41 0.9 3.83 2.48 0.89 
  0.99 0.77 3.48 2.36 0.79 68.12 6.34 0.68 
  0.97 0.58 3.54 2.36 0.79 21.45 4.19 0.69 

 

5 Conclusion 
 
The aim of this paper was to evaluate the performance of the proposed estimators relative to ANOVA’s 
estimator via simulation studies. Different criteria such as mean squared error, bias and probability of getting 
negative estimates are used to show the performance of the estimators under the study.  
 
From simulation study, we estimated the variance components by MMIV(MIV(0)) and ANOVA methods 
under normality assumption and compared the estimators for unbalanced two-way nested random model. 
 
In unbalanced two-way random nested model, It is better to estimate variance component by 
MMIV(MIV(0)) method. ANOVA method has negative estimates which affects mean squared error and 
bias. 
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