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Abstract

Recent simulations show that giant planets of about 1 MJ migrate inward at a rate that differs from the type II
prediction. Here we show that at higher masses, planets migrate outward. Our result differs from previous ones
because of our longer simulation times, lower viscosity, and boundary conditions that allow the disk to reach a
viscous steady state. We show that, for planets on circular orbits, the transition from inward to outward migration
coincides with the known transition from circular to eccentric disks that occurs for planets more massive than a few
Jupiters. In an eccentric disk, the torque on the outer disk weakens due to two effects: the planet launches weaker
waves, and those waves travel further before damping. As a result, the torque on the inner disk dominates, and the
planet pushes itself outward. Our results suggest that the many super-Jupiters observed by direct imaging at large
distances from the star may have gotten there by outward migration.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Planetary migration (2206); Planet
formation (1241)

1. Introduction

It has long been thought that gap-opening planets migrate by
type II migration (Ward 1997; Armitage 2010; Kley &
Nelson 2012). In type II, it is hypothesized that planets open
gaps that are empty of gas. As a result, gas does not cross a
planet’s orbit, and the planet is forced to migrate in lockstep
with the disk’s inward accretion flow. But this hypothesis is at
odds with hydrodynamical simulations, which find that inward
gas flow is largely unimpeded by a deep gap (Lubow et al.
1999; Crida et al. 2006; Duffell et al. 2014; Fung et al. 2014;
Dürmann & Kley 2015; Kanagawa et al. 2017; Robert et al.
2018). Furthermore, recent simulations show that the migration
rate of Jupiter-mass planets differs from the type II prediction
(Dürmann & Kley 2015; Kanagawa et al. 2018; Dempsey et al.
2020a, hereafter DLL). And as shown in Figure 12 of DLL, the
rates found by different groups agree with each other.
Theoretically, the reason for the failure of type II is understood
(see Section 1.1).

But the question of what happens for planets more massive
than Jupiter has not been adequately addressed. One might
expect that sufficiently massive planets clear deep enough gaps
to satisfy the criterion of type II migration. However, once a
planet’s mass exceeds around twice that of Jupiter, it excites the
disk’s eccentricity (Kley & Dirksen 2006; Regály et al. 2010;
Teyssandier & Ogilvie 2016, 2017), and the eccentricity of the
gas will affect how the planet is torqued. This effect has not
been explored in viscous steady state, and the resulting long-
term migration rate is thus poorly constrained.

A change in migration direction should occur for very
massive secondaries, since it is now known that binary stars of
near-equal mass ratio expand while embedded in a disk
(Muñoz et al. 2019, 2020; Moody et al. 2019; Duffell et al.
2020). Indeed, such a transition was found by Duffell et al.
(2020) to occur in the brown dwarf regime, albeit using
viscosities and scale heights larger than are typically expected
in protoplanetary disks. In this paper, we show that the
migration transition depends on viscosity and scale height, and

that in more realistic disks, the transitional companion mass is
around twice the mass of Jupiter. This transition coincides with
the development of substantial eccentricity in the disk.

1.1. Theory: Beyond Type II

A planet embedded in a disk excites waves (Goldreich &
Tremaine 1979). These waves carry angular momentum and
therefore torque the disk where they damp, thereby altering the
disk’s surface density profile. Furthermore, the waves’ angular
momentum comes at the expense of the planet’s, and so the
planet must migrate. Goldreich & Tremaine (1980), Artymo-
wicz (1993), and Ward (1997) worked out how much angular
momentum is excited in waves, and their theory adequately
predicts what is found in simulations, even for very deep gaps
and Jupiter-mass planets—provided the surface density profile
is known (see, e.g., the comparison in Figure 14 of DLL).
There is, however, an important missing component: how far

do waves travel before damping? The answer is crucial,
because even if the waves’ angular momentum is known, one
can only determine how the waves affect the disk’s
(azimuthally averaged) surface density profile if one knows
where that angular momentum is deposited. The surface
density profile, in turn, determines the amplitude of the excited
waves, and hence the angular momentum carried by them.
Ward (1997) answered this question by assuming that waves
damp immediately upon being excited. With this assumption,
gaps are exponentially deep for planet masses slightly greater
than the gap-opening threshold (Syer & Clarke 1995;
Ward 1997). Therefore, disk material is strongly prevented
from crossing the planet’s orbit, and the planet is locked in the
disk—aka the type II paradigm.
The assumption of zero damping length is unfounded, as

recognized by Ward (1997, Section IV-b) and many others
(e.g., Lunine & Stevenson 1982; Goodman & Rafikov 2001;
Rafikov 2002; Duffell 2015; Kanagawa et al. 2015). If the
waves travel before damping, the predicted gap becomes much
shallower than the exponential depth at zero damping length
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(Crida et al. 2006; Duffell 2015; Kanagawa et al. 2015;
Ginzburg & Sari 2018; DLL). This is true even if the damping
length is modest—of order a scale height. The fact that
simulated gaps are not exponentially deep, and the reason for
the failure of type II, is therefore simply that waves travel
before damping.4 In order to accurately determine where in the
disk the waves damp, and thereby obtain the gap depth and the
torques on the planets, one may build a theory, as has been
done for low-mass planets (e.g., Goodman & Rafikov 2001).
But for near-Jupiter-mass planets, which excite strongly
nonlinear waves, the theory has thus far proven intractable.
Therefore, we turn to hydrodynamical simulations.

2. Simulations

We run 2D hydrodynamical simulations that are very similar
to those in DLL. But we focus now on super-Jupiters. The disk
is fed at large radii with constant mass flux ( M ) and is evolved
long enough that it reaches a viscous steady state. The planet is
fixed on a circular orbit with radius rp and orbital frequency Ωp.
We assume that the disk has a sufficiently low mass that it is
appropriate to treat the planet’s orbit as fixed when finding the
disk’s steady-state structure. As shown in Section 4, that
assumption restricts the disk’s mass to being less than the
planet’s.

We use the staggered-mesh GPU-accelerated code FAR-
GO3D (Benítez-Llambay & Masset 2016). The disk feels the
gravity of both planet and star, as well as pressure and
viscosity. The disk is locally isothermal with sound speed
cs= hΩr, where h is the spatially constant disk aspect ratio, r is
distance to the star, and Ω is the Keplerian orbital frequency.
We adopt the Shakura & Sunyaev (1973) α-viscosity model,
setting the kinematic shear viscosity to n a= Wcs

2 with a
spatially constant α.

The code is run in the frame centered on the star and
corotating with the planet. We therefore include the indirect
potential due to the acceleration of the star by the planet.
Further details regarding the indirect potential are in
Appendix A.

We divide the mesh into nearly square cells, with dimensions
fD = D =rln constant throughout the domain. For the bulk

of our simulations, we use a resolution of eight cells per scale
height. In Appendix C (Figure 5), we show with an example
simulation that this grid size is adequate for determining the
total torque injected by the planet.

The principal result of each simulation is the torque on the
disk in steady state, ΔT, which is the sum of the (positive)
torque on the outer disk and the (negative) torque on the inner
disk:

( )ò f
fD = - S

¶F

¶
T rdrd , 1

p

disk

where Φp is the planet’s gravitational potential, and Σ is the gas
surface density. The normalized torque is ( )DT Mℓp , where

= Wℓ rp p p
2 . It is a function only of our three basic parameters,

α, h, and the planet–star mass ratio (q); in particular, it is
independent of M and hence of disk mass.

2.1. Boundary Conditions

The main difference between the simulations in DLL and
those done by other groups is the boundary conditions.
Conventionally, the disk is fixed to its initial profile at the
boundaries. But that does not allow the disk to relax to a
steady-state profile that is independent of the boundary
locations. Instead, at our outer boundary, the disk is fed with
a constant M by using the analytic solution for a steady-state
disk beyond the zone where the waves have damped. That
solution permits a pileup or deficit of gas beyond the planet’s
orbit. And at the inner boundary, material is drained without
injecting angular momentum, which allows the disk there to
reach the surface density profile of a free steady disk, which has
 pn= SM 3 . In practice, this is done by setting νΣ to be
constant across the inner boundary (see also the discussion of
the inner boundary condition in Dempsey et al. 2020b). Our
boundary conditions are valid whether or not the type II
hypothesis is correct. If it is correct, i.e., if no material crosses
the planet’s orbit, then the inner disk in our simulations would
drain away, and the outer pileup would continually grow.
Instead, we find that the disk reaches a viscous steady state,
with a constant flow past the planet.
Our boundary conditions here differ from DLL in one

significant way: we enforce the outer boundary condition in the
barycentric frame (see Appendix B for details). If we instead
use the stellocentric frame, we find that the indirect terms
generate an artificial eccentricity near the outer boundary—an
effect that was less pronounced in DLL because of the smaller-
mass planets considered there. In many of these new
simulations, the disks are found to be eccentric. But in all
cases, the eccentricity near the outer boundary is sufficiently
small that it is appropriate to treat orbits there as circular around
the barycenter (e.g., Figure 3 below).
For most of our simulations, we place the computational

boundaries at rin= 0.3rp and rout= 12rp, where rp is the
planet’s orbital radius. To prevent wave reflections near the
inner boundary, we place a wave-killing region between
r= [0.3rp, 0.4rp].

5 Our method of wave killing preserves
angular momentum (DLL) and so captures all of the torque
injected by the planet in the computational domain. Wave
killing is unnecessary at the distant outer boundary, because
waves dissipate before reaching it.

3. Results

3.1. Planet Migration and Disk Eccentricity

We run simulations with the q, α, and h values shown in
Figure 1. Each simulation is run until the time- and azimuthally
averaged ( )M r profile is spatially constant to within <10% (see
Appendix C). In many of the simulations, ΔT does not reach a
constant but instead varies quasiperiodically in a steady state
(see Figure 5). As discussed below, the quasiperiodicity is
associated with the disk being eccentric and apsidally
precessing.

4 Scardoni et al. (2020) presented simulation results in which planets migrate
close to the predicted type II rate after transients have died away. They
therefore claimed that type II is correct. But their final migration rates are only
close to the predicted value—and, in fact, are in agreement with the prior
simulation results that show a clear difference from type II (Dürmann &
Kley 2015; Kanagawa et al. 2018; DLL; Kanagawa & Tanaka 2020). More
tellingly, they plotted the mass flow through the gap and found that it does not
vanish, in contradiction with the basic postulate of type II.

5 Our simulations with the highest h have a smaller inner boundary,
rin = 0.1rp, and wave killing up to r = 0.2rp, because wave deposition extends
further at high h.
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Convergence typically takes up to seven viscous times,
evaluated at rp. The simulations are computationally expensive
both because we run for a number of viscous times and because
some disks become eccentric, which forces the time step to be
smaller. For example, on a single P100 GPU, one viscous time
at rp takes ∼20 days of wall time for our lowest α simulations.

In Figure 1, we plot a plus or minus sign to indicate the
direction of the planet’s migration. At each h, the transition
between inward and outward migration is roughly determined
by the value of K≡ q2/(αh5), with the critical value of K
depending on h. We note that K is equal to the ratio of the one-
sided torque in the absence of a gap (∝ q2/h3) to the viscous
torque (∝ αh2; Lin & Papaloizou 1986; Duffell & MacFa-
dyen 2013; Kanagawa et al. 2015) and found in simulations to
set the gap depth when q 10−3 (Duffell & MacFadyen 2013;
Fung et al. 2014; Kanagawa et al. 2017).

The migration rate is obtained by angular momentum

conservation, / = -DM ℓ r r T
1

2
p p p p , where Mp is planet mass.

We may rewrite this as

( )


t
= -

D
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r

r

T
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1
, 2
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p

p
⎜ ⎟
⎛

⎝

⎞
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where

( )
t t

º
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M

M

1 1
3d

p

is the “mass-reduced viscous rate,” which we define in terms of
the following quantities: the viscous time ( )t n=n r rp p

2

3
2 and

the proxy disk mass ( )p= SM r r4d p Z p
2 , where ( ) pnS = M 3Z

is the surface density profile in the absence of the planet (DLL).
For comparison, the type II migration rate for planets less
massive than the disk is −1/τν (Ward 1997). And for planets
more massive than the disk (upon which we focus), type II
predicts the rate to be ( ) t- g

n*M Md p , where γ is a positive
number whose value depends on the assumed background disk
profile (Syer & Clarke 1995; Ivanov et al. 1999).

Figure 2 (top left panel) shows the migration rates from the
simulations. The curves in the top left panel are from DLL, in
which we ran simulations with q� 10−3 and h= 0.05, and fit

the resulting ΔT to a power-law expression. The extrapolation
of those curves to higher q is clearly discrepant with our
simulations here.
For our present simulations with higher-mass planets, we see

that at high enough q, planets migrate outward. For example,
focusing first on the simulation set with h= 0.05 (filled
diamonds), we see that the subset with α= 0.01 transitions to
outward migration at q 4× 10−3. At lower α (and still
h= 0.05), the transition to outward migration occurs at a
lower q.
The transition from inward to outward migration happens

alongside another transition: the disk becomes eccentric. In the
bottom left panel of Figure 2, we plot the maximum
eccentricity in the disk emax versus q, where the eccentricity
is measured by averaging the eccentricity vector within each
ring of the disk and then time-averaging the resulting (scalar)
eccentricity (Teyssandier & Ogilvie 2017). Comparing each
subset of simulations in the top left and bottom left panels, we
see that migration is inward in nearly circular disks and
outward in eccentric ones (i.e., when e 0.1max ).
As seen in Figure 2, both transitions occur above a critical q

that depends on α and h. We find empirically that the transition
occurs at roughly a fixed value of

( )
a

¢ º =K Kh
q

h
. 42

2

3

The right panels of Figure 2 replot the data in the left panels,
but now with ¢K on the x-axis. We observe that at ¢K 20,
i.e., at

( ) a
´ -q

h
1.5 10

0.001 0.05
, 53

1 2 3 2
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

the migration rate transitions from inward to outward, and the
disk eccentricity transitions from 0.1 to 0.2. The parameter
¢K has been found empirically to correlate with the width of the

gap for planets not massive enough to excite a significant disk
eccentricity (Kanagawa et al. 2016; DLL). Kley & Dirksen
(2006) and Teyssandier & Ogilvie (2017) found that for
α= 0.004 and h= 0.05, disks become eccentric when
q 3× 10−3, in agreement with Equation (5).
The theory laid out in Lubow et al. (1999) and Teyssandier

& Ogilvie (2016, 2017) shows that the disk’s eccentricity
excitation is sensitive to the density profile, because the density
profile controls whether the resonances that excite eccentricity
are stronger than those that damp it. Hence, the fact that ¢K —

and hence the gap width—appears to control whether disks are
eccentric or not is not too surprising. Nonetheless, although the
theory of Teyssandier & Ogilvie (2016) successfully predicts
many aspects of their simulations, it does not reproduce the
correct threshold for where eccentricity is excited, so they may
be missing an effect.

3.2. Why Do Planets Migrate Outward in Eccentric Disks?

Figure 3 shows the steady-state profiles of surface density
and eccentricity for simulations that have h= 0.05 and ¢K near
the migration transition. In the top row, migration is inward and
the disk is nearly circular; in the bottom, migration is outward
and the disk is eccentric. The profiles are time-averaged in
steady state over 10,000 orbits, which is much longer than the
precessional times. As seen in the Σ profiles, higher values of
¢K systematically result in deeper gaps.

Figure 1. Parameters covered by our simulations. We denote the resulting
direction of planet migration with a plus sign for outward migration and a
minus sign for inward. Diagonal lines have constant K = q2/(αh5).

3

The Astrophysical Journal Letters, 918:L36 (9pp), 2021 September 10 Dempsey, Muñoz, & Lithwick



In the circular disks, the gaps are nearly symmetric relative
to the planet’s position, while in the eccentric disks, the outer
half of the gap becomes significantly wider than the inner one.
In addition, the circular disks have a modest density pileup
outside of the planet’s orbit, and the eccentric ones have a
deficit. The sign and magnitude of the pileup is dictated by the
value of ΔT (as shown in Equation (19) of DLL, which follows
from Equation (7) below).

Turning to the eccentricity profiles, we see that above the
transitional ¢K , it is the outer disk that develops a significant
eccentricity. And, although not shown in the figure, the
eccentric disks precess coherently,6 and the amplitude of the
eccentricity remains unchanged over multiple viscous times.
This points to the eccentricity being a free mode of the disk
(Teyssandier & Ogilvie 2016; Lee et al. 2019), with an
excitation that balances viscous damping to maintain the mode
in a steady state (as in circumbinary disks; see Muñoz &
Lithwick 2020).

The right panels show Tdep, the cumulative torque deposited
into the disk (within each r) by the damping of waves. To
calculate Tdep, we evaluate the angular momentum flux carried
by waves and then remove from that the gravitational torque
excited by the planet (DLL). We see that throughout most of
the outer disk, Tdep increases with r, showing that the torque
deposition per unit r is positive there; i.e., that region is
responsible for pushing the planet inward. Similarly, most of
the inner disk pushes the planet outward, as Tdep decreases with

r when r< rp. Far beyond the planet—outside a few× rp—Tdep
flattens and approaches ΔT; i.e., all of the torque excited by the
planet is eventually deposited in the disk. We henceforth use
the Tdep profiles to examine what is causing ΔT to become
negative in eccentric disks.
Figure 3 shows that the torque on the inner disk is always

( ) ( )= » -T r r Mℓ . 6p pdep

Equation (6) is a generic result for deep gaps in steady-state
disks. It follows from the conservation of angular momentum
flux, which we approximate here as

( ) ( )pn» áSñ -T r ℓ Mℓ3 7dep

(see DLL for the full expression). Therefore, if the gap is
sufficiently deep, the first term on the right-hand side may be
neglected at rp, confirming Equation (6). In the right panels, we
also convert the Σ profiles to Tdep via Equation (7). The result
is shown as dotted curves. The fact that these agree with the
directly calculated Tdep confirms that the disk is in viscous
steady state.
Given the value of the torque on the inner disk

(Equation (6)), it must be that ΔT becomes negative in
eccentric disks because the torque on the outer disk weakens.
But why? From the theory in Section 1.1, we must examine
torque excitation and deposition.

1. Excitation. For a given Σ profile, eccentricity could lower
ΔT if it lowers the amplitude of the excited waves in the
outer disk and hence lowers the angular momentum
carried by them. (We also include in this category the
change in co-orbital torques; see below.)

Figure 2. Dependence of the migration rate and maximum disk eccentricity on q and the gap-width scaling parameter ¢K . The curves in the top left panel summarize
the scalings found from DLL for lower-mass (q � 10−3) planets at h = 0.05 after extrapolating to these masses. Note that points with q = 10−3 are taken from DLL.

6 For some large q simulations, we find a second bump in the eccentricity
profile in the outer disk that has a low amplitude (e.g., the purple curve in the
bottom middle panel of Figure 3) and precesses at a different rate than the main
bump. But, as seen in the right panel, the torque is unaffected by this
secondary mode.
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2. Deposition. For a given ΔT, eccentricity could increase
the distance waves travel before they damp. A longer
damping length means a wider gap (from Equation (7)),
which implies that at the location where the waves are
excited, Σ is lower, and hence the wave amplitude is
lower.

We examine item 1 in Figure 4 by comparing the simulated
values of ΔT with a linear calculation of ΔT in a circular disk
whose Σ(r) profile is the same as that from the simulation7

(see DLL for our linear calculation method.)We see that for the
circular disks ( ¢K 20), the linear calculation adequately
predicts what is found in the simulations. But for the eccentric
disks, it overpredicts ΔT. We infer that the disk being eccentric
lowers ΔT, as suspected in item 1. A more detailed
examination shows that much of the lowering is indeed due
to outer waves carrying less angular momentum in the
simulated eccentric disk (relative to the linear calculation).
But there is an additional effect: the co-orbital torques become
stronger (more negative) in the eccentric disks. We find this
effect to be subdominant up to ¢ ~K 50; for ¢K larger than that,
the two effects are comparable.

Turning to item 2, the right panels of Figure 3 show that the
damping length is indeed longer in the eccentric disks.
Unfortunately, we have not been able to quantify the relative
importance of items 1 and 2. For a partial quantification of the
latter, the curves in Figure 4 show the extrapolations from the
circular planet simulations (as in Figure 2). These lie above the
open diamonds for the eccentric disks ( ¢K 10), and one of
the reasons for the discrepancy is that the gap shape for the
open diamonds is wider than would be implied in the
extrapolations. In truth, explanations 1 and 2 are entangled;

e.g., when waves are excited to lower amplitudes, they travel
further before becoming nonlinear and damping. But for a first-
principles derivation, one must extend the theory of Goodman
& Rafikov (2001) to investigate more massive planets and
viscous disks.

4. Summary and Discussion

4.1. Summary

Figure 2 encapsulates our main result: planet migration
transitions from inward to outward when the planet exceeds
around 2 MJ for the fiducial values α= 0.001 and h= 0.05
(Equation (5)). This transition coincides with the disk

Figure 3. Profiles of surface density, eccentricity, and (cumulative) deposited torque in some nearly circular disks (top panels) and eccentric disks (bottom panels).
Each profile is time-averaged over the final 10,000 orbits of the simulation, after the torque has reached its steady-state value. Eccentric disks have more extended
outer gaps and weaker outer torques. The latter forces their total torque, ∣ D ºT T r rdep p, to be negative. Simulations are labeled such that, e.g., “q8a30h5” corresponds
to q = 8 × 10−3, α = 30 × 10−3, and h = 5 × 10−2.

Figure 4. Comparison of ΔT (filled symbols) to the linear ΔT (open symbols)
calculated from the áSñ profiles for disks with h = 0.05. The solid lines show
the extrapolations of the circular disk results of DLL to these masses.

7 One could check hypothesis 1 directly by extending the linear theory of
torque excitation to an eccentric disk. We defer such an analysis to future work.
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becoming eccentric. In Section 3.2, we showed why eccentric
disks lead to outward migration.

We find that the total torques are always close in magnitude
to the advection torque (∣ ∣ D ~T Mℓp), whether migration is
inward or outward (Figure 2). As a result, the migration rates
are comparable in magnitude to the “mass-reduced viscous
rate” (Equation (2)).8 It is not surprising that ∣ ∣ D ~T Mℓp when
migration is outward, because the inner torque is always equal
to -Mℓp for deep gaps (Section 3.2); so, if the outer torque is
subdominant, the total torque will also be close to -Mℓp. But it
is surprising that, even when migration is inward, it is never the
case that  DT Mℓp. We speculate that this is because a
planet always acts as a leaky sieve, so the pileup beyond the
planet can never be too big. That would, in turn, imply that the
normalized torque cannot be too large because of the close
connection between the pileup and the normalized torque
(DLL). But why the planet should always act as a leaky sieve
remains an open question.

4.2. Assessment of Key Assumptions

1. α-model. Perhaps our most questionable assumption is
that of α-viscosity. If angular momentum is transported
by a nonviscous mechanism, such as disk winds, then the
gap shapes would be different, and hence so would the
torques.

2. Low-mass disk. Fixing the planet’s orbit is a good
approximation when the planet’s migration timescale
( t~ n*) is shorter than the gas radial drift timescale (τν) or,
equivalently, when MdMp.

3. Circular planet orbit. An eccentric planet will introduce a
forced component to the disk eccentricity on top of the
free component that is excited above the transitional
mass. The planet’s eccentricity will also modify the
torque on the disk. D’Angelo et al. (2006) included the
backreaction of the disk on the planet and found that the
planet’s eccentricity is rapidly excited, which affects the
migration direction. But their inner disks are severely
depleted, perhaps due to their inner boundary condition,
an insufficient run time compared to the viscous time, or
material being lost onto the planet. Moreover, their disks
are at least as massive as the planet, invalidating our low-
mass disk assumption. In the future, we plan to determine
whether the planet’s eccentricity is excited or damped in
low-mass steady disks, as has been done for stellar
binaries (e.g., Muñoz et al. 2019; D’Orazio & Duf-
fell 2021). In the latter case, it has been found that the
binary’s eccentricity damps if it is below a threshold
eccentricity of around 0.1, even though the disk is very
eccentric.

4. 2D disk. For high-mass planets, gaps are much wider than
the disk scale height, so the 2D treatment should
adequately capture the excitation and deposition torques.

5. No accretion onto planet. Our large softening parameter
prevented planetary accretion. Realistic modeling of
accretion requires high resolution, in addition to a more
accurate treatment of the thermal state of the gas, disk
self-gravity, and three dimensions (e.g., Fung et al. 2019).
If a significant fraction of the disk’s radial mass flow ends

up in the planet, the migration rates would change
significantly. Additionally, the torque from the circum-
planetary region is unrealistic. But we have checked that
this torque is small, typically contributing between 0.1
and 0.25 to the dimensionless migration rates in Figure 2.

6. Locally isothermal equation of state. Adopting a finite
cooling time, rather than the instantaneous cooling that
we assume, would affect the deposition profile. That is
because linear waves deposit angular momentum into the
disk even in the absence of viscous dissipation, and the
amount depends on the cooling time (Miranda &
Rafikov 2020). We suspect that this dependence is
minimal for the very massive planets considered in this
paper, for which viscous dissipation (including by
shocks) likely dominates over the aforementioned linear
wave deposition.

7. Inner boundary condition. For our results not to depend
on the inner boundary, the inner wave-killing zone must
be far enough from the planet that most of the torque
excitation occurs within the simulation domain (DLL).
We have checked that by examining the excitation
profile. In addition, we have tested roughly half of our
h< 0.1 simulations by continuing them in a domain with
a smaller wave-killing boundary (down to 0.2rp) and
found in these cases that the change in torque was small.
Note that the h= 0.1 simulations require a larger radial
domain (see footnote 2) because the wave excitation
profile is broader at larger h.

4.3. Comparison to Prior Work

Previous studies have found outward migration of massive
planets, but these require either steeply falling surface density
profiles (Chen et al. 2020) or extremely massive disks to induce
either type III migration (Masset & Papaloizou 2003) or
gravitational instability (Lin & Papaloizou 2012; Cloutier &
Lin 2013). By contrast, we find outward migration more
generally for super-Jupiters, subject to the assumptions listed
above.
Recently, Duffell et al. (2020) examined a setup similar to

ours and found that ΔT reverses sign in the brown dwarf
regime, but for h= 0.1 and α� 0.03. Using Equation (5) for
their parameters, we find general agreement with their
transitional masses (see their Figure 5), suggesting that the
torque reversal reported by Duffell et al. (2020) is equivalent
to ours.

4.4. Directly Imaged Planets

The 2 MJ threshold that we have uncovered is intriguingly
similar to the lowest-mass giant planets discovered via direct-
imaging techniques (e.g., Bowler & Nielsen 2018). Due to their
large masses and wide separations, these planets were once
thought to originate from gravitational instabilities. But recent
evidence points to a mass distribution that may be consistent
with the core accretion scenario (Nielsen et al. 2019; Wagner
et al. 2019). Thus, those super-Jupiters detected via direct
imaging could be the outcome of core accretion but followed
by outward migration in an eccentric disk. This scenario would
not require the presence of additional giants, as would be the
case for jointly migrating planets trapped in mean-motion
resonance (Crida et al. 2009). It has indeed been speculated that
outward migration could explain the properties of directly

8 For comparison, the type II rate, /tn1 , is dramatically slower than the mass-
reduced viscous rate when Md = Mp. But for Md ∼ Mp, the type II rate is close
to the true rate in magnitude, even though type II can predict the wrong sign.
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imaged planets, e.g., as pointed out recently by Bohn et al.
(2021) in the context of their discovery of an ∼6 MJ planet at
115 au from its star. We propose that such planets could have
migrated via interaction with an eccentric disk.
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Appendix A
The Indirect Potential

We run our simulations in the stellocentric frame, where the
gravitational acceleration for a fluid element located at position
r relative to the star is

̈
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where dm=Σrdrdf is the mass element of the disk. The first
two terms are the direct accelerations due to the star and planet,
while the last two terms are the indirect accelerations due to the
acceleration of the star by the planet and disk. We neglect the
last term in the simulations both because we consider small
disk masses and because it is proportional to disk eccentricity
and so averages out on the precessional timescale.

We now consider how the indirect terms affect the torque
measurements. We will show that the last term in
Equation (A1) has a subdominant effect, so we do not include
it in our torque measurements in the body of the paper.
Equation (A1) is evaluated in the stellocentric frame, but the
total torque on the planet–star binary is most easily evaluated in
the barycentric frame. In this frame, the disk torques the binary
according to
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where Lb is the angular momentum of the binary and R is the
position of a disk element with respect to the star–planet–disk
center of mass. Note that the third term of Equation (A1),
which is the acceleration of the star due to the planet, does not
contribute to Lb. The stellocentric and barycentric disk
positions are related via the center-of-mass position of the star,
r= R− Rå, where

( ) m m= - -R r r A3p p d d

and μp,d=Mp,d/(Må+Mp+Md) are the mass ratios of the
planet and disk, Md= ∫dm is the disk mass, and rd= ∫rdm/Md

is the center-of-mass position of the disk. Carrying out the
cross products in terms of the stellocentric positions and
approximating ( )  » =L L M ℓ r r2b p p p p p for small mass ratios,
we find
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The first line is the familiar torque of the disk on the planet
due to the direct acceleration (second term of Equation (A1)).
The second and third lines are corrections arising from the
displaced disk center of mass (the last term in Equation (A1)).
We neglect the contribution from the third line, as we find that
rd in all simulations is on the order of e rpmax , making the third
line an order e M M 1d pmax correction. The remaining
correction to the direct torque is the second line, which we
measure, a posteriori, to be Mℓ0.2 p. If we were to include this
term in the ΔT values shown in Figure 2 (which only contain
the direct torque), the points at K 20 would shift by a minor
amount, but not enough to affect our main conclusions.

Appendix B
Barycentric Outer Boundary Condition

We apply the inflow boundary condition of DLL at the
disk’s outer boundary. The distant inward flow is assumed to
be axisymmetric around the star–planet barycenter, which is
displaced from the origin of the simulation. We prescribe the
inflow rate, M , and set ( ) pnS = M 3 at the boundary. The
fluid velocities are set to their barycentric values,

( ) p= - Sv M r2r b,bary , where rb is the distance to the
barycenter, and vf,bary is the pressure-corrected Keplerian
velocity. We then transform the barycentric velocities to
FARGO3D’s stellocentric rotating frame using
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where = + Wn q1 p is the planet’s mean motion, and fb is
the azimuthal angle in the barycentric coordinate system. For
each cell along the stellocentric boundary with Cartesian
stellocentric coordinates (x, y), we first compute

( )m= - +r x r yb p
2 2 , where μ= q/(1+ q), and then

apply the transformation given by Equation (B1) with
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Teyssandier & Ogilvie (2017) used a boundary condition
similar to Equation (B1) but with vr,bary= 0.
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Appendix C
Convergence of Simulations

We run each simulation in two stages. In the first stage, we
start the simulation with the steady-state planetless solution, fix
M at both boundaries, and evolve the disk long enough for the
gap to open and reach a quasi-steady state. During the second
stage, we switch to the inner boundary condition described in
Section 2.1 that allows M at the inner boundary to adjust as the
disk evolves to a global steady state.

Simulations reach a steady state once the time- and
azimuthally averaged M is independent of r. For our lowest
α, we find that the average M in the outer disk (r> 1.05rp) is
within 10% of the average inner disk M (r< 1.05rp). These M
typically agree to less than 1% in the larger α cases.

In the first four panels of Figure 5, we show that all of our
migration rates are converged in time. Each point is normalized
to the current value of M at the inner boundary and time-
averaged over a window of 1000 orbits to remove short-
timescale oscillations. For clarity, we only show the final seven
viscous times, but we note that many of the simulations are
converged in the first few viscous times.

The fifth panel of Figure 5 shows the dependence of ΔT on
the simulation resolution for one exemplary simulation with
q= 0.008, α= 0.03, and h= 0.05. We find that once the
resolution exceeds six points per scale height, the migration
rate is converged. Moreover, we showed in DLL with many
more simulations that our fiducial resolution of eight points per
scale height was adequate for determining ΔT.

As discussed in Section 2.1, some simulations use a smaller
inner boundary in order to capture all of the torque excited by
the planet. The amount of missing torque is typically small for
simulations with h< 0.1 that have an inner boundary at 0.3rp.
The only exception to this is the q8a30h5 simulation, for which
moving the inner boundary to 0.1rp lowered the migration rate

by ∼50%. This reduction was due to an ∼50% smaller disk
eccentricity, which resulted in a comparatively larger outer disk
torque. Nonetheless, this simulation was on the boundary
between low and high eccentricity (see Figure 2) and therefore
does not affect the transitional ¢K that we find.
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