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Abstract: Let G = (V, E) be a finite simple graph with v = |V(G)| vertices and e = |E(G)| edges. Further
suppose that H := {H1, H2, . . . , Ht} is a family of subgraphs of G. In case, each edge of E(G) belongs to at
least one of the subgraphs Hi from the family H, we say G admits an edge-covering. When every subgraph
Hi in H is isomorphic to a given graph H, then the graph G admits an H-covering. A graph G admitting H
covering is called an (a, d)-H-antimagic if there is a bijection η : V ∪ E → {1, 2, . . . , v + e} such that for each
subgraph H′ of G isomorphic to H, the sum of labels of all the edges and vertices belongs to H′ constitutes an
arithmetic progression with the initial term a and the common difference d. For η(V) = {1, 2, 3, . . . , v}, the
graph G is said to be super (a, d)-H-antimagic and for d = 0 it is called H-supermagic. When the given graph
H is a cycle Cm then H-covering is called Cm-covering and super (a, d)-H-antimagic labeling becomes super
(a, d)-Cm-antimagic labeling. In this paper, we investigate the existence of super (a, d)-Cm-antimagic labeling
of book graphs Bn, for m = 4, n ≥ 2 and for differences d = 1, 2, 3, . . . , 13.
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1. Introduction

L et G be a finite and simple graph. A family of subgraphs H1, H2, . . . , Ht is defined as an edge-covering
of G such that each edge of E(G) belongs to at least one of the subgraphs Hi, i = 1, 2, . . . , t. Then G

admits an (H1, H2, . . . , Ht)-(edge) covering. If every subgraph Hi is isomorphic to a given graph H, then the
graph G admits an H-covering. A graph G admitting an H-covering is called (a, d)-H-antimagic if there exists
a total labeling η : V(G) ∪ E(G) → {1, 2, . . . , v + e} such that for each subgraph H′ of G isomorphic to H, the
H′-weights,

wtη(H′) = ∑
v∈V(H′)

η(v) + ∑
e∈E(H′)

η(e),

constitute an arithmetic progression a, a + d, a + 2d, . . . , a + (t − 1)d, where a > 0 and d ≥ 0 are two
integers and t is the number of all subgraphs of G isomorphic to H. Moreover, G is said to be super
(a, d)-H-antimagic, if the smallest possible labels appear on the vertices. If G is a super (a, d)-H-antimagic
graph then the corresponding total labeling η is called the super (a, d)-H-antimagic labeling. For d = 0, the
super (a, d)-H-antimagic graph is called H-supermagic.

The H-supermagic graph was first introduced by Gutiérrez et al. in [1]. They proved that the star K1,n
and the complete bipartite graphs Kn,m are K1,h-supermagic for some h. They also proved that the path Pn and
the cycle Cn are Ph-supermagic for some h. Lladó et al. [2] investigated Cn-supermagic graphs and proved
that wheels, windmills, books and prisms are Ch-magic for some h. Some results on Cn-supermagic labelings
of several classes of graphs can be found in [3]. Maryati et al. [4] gave Ph-supermagic labelings of shrubs,
subdivision of shrubs and banana tree graphs. Other examples of H-supermagic graphs with different choices
of H have been given by Jeyanthi et al. in [5]. Maryati et al. [6] investigated the G-supermagicness of a disjoint
union of c copies of a graph G and showed that disjoint union of any paths is cPh-supermagic for some c and
h.

The (a, d)-H-antimagic labeling was introduced by Inayah et al. [7]. In [8] Inayah et al. investigated the
super (a, d)-H-antimagic labelings for some shackles of a connected graph H.
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For H ∼= K2, super (a, d)-H-antimagic labelings are also called super (a, d)-edge-antimagic total labelings.
For further information on super edge-magic labelings, one can see [9–12].

The super (a, d)-H-antimagic labeling is related to a super d-antimagic labeling of type (1, 1, 0) of a plane
graph which is the generalization of a face-magic labeling introduced by Lih [13]. Further information on
super d-antimagic labelings can be found in [14–16].

In [17], Awais et al. proved the existence of (a, d)-C4-antimagic labeling of book graphs Bn (for difference
d = 0, 1) and of its disjoint union. In this paper, we study the existence of super (a, d)-C4-antimagic labeling of
book graphs Bn for differences d = 1, 2, 3, . . . , 13 and n ≥ 2.

2. Super Cycle Antimagic Labeling

In this section, we discussed super (a, d)-C4-antimagicness of book graphs for difference d = 1, 2, 3, . . . , 13.

Let K1,n, n ≥ 2 be a complete bipartite graph on n + 1 vertices. The book graph Bn is a cartesian product of
K1,n with K2. i.e., Bn ∼= K1,n2K2. Clearly book graph Bn admits C4-covering. The book graph Bn has the vertex
set and edge set as

V(Bn) = {y1, y2} ∪ ∪n
i=1{x(1,i), x(2,i)}

E(Bn) = ∪n
i=1{y1x(1,i), y2x(2,i), x(1,i)x(2,i)} ∪ {y1y2}

respectively. It can be noted that |V(Bn)| = 2(n + 1) and |E(Bn)| = 3n + 1.
Every C(j)

4 , 1 ≤ j ≤ n in Bn has the vertex set: V(C(j)
4 ) = {y1, y2, x(1,j), x(2,j)} and the edge set: E(C(j)

4 ) =

{y1y2, y1x(1,j), y2x(2,j), x(1,j)x(2,j)}.
Under a total labeling ξ, the C(j)

4 -weights, j = 1, . . . , n, would be:

wtξ(C
(j)
4 ) = ∑

v∈V(C(j)
4 )

ξ(v) + ∑
e∈E(C(j)

4 )

ξ(e).

=
2

∑
k=1

(
ξ(yk) + ξ(x(k,j)) + ξ(ykx(k,j))

)
+ ξ(y1y2) + ξ(x(1,j)x(2,j)) (1)

Theorem 1. For any integer n ≥ 2, the book graph Bn admits super (a, d)-C4-antimagic labeling for differences
d = 1, 3, . . . , 13.

Proof. Under a labeling ξ, the set {y1, y2, y1y2}, would be labeled as:

ξ(yk) = k, k = 1, 2

ξ(y1y2) = 2(n + 1) + 1

and therefore the partial sum of wtξ(C
(j)
4 ) would be

ξ(y1) + ξ(y2) + ξ(y1y2) = 2(n + 3). (2)

For d = 1, 3, . . . , 9, 13

ξd(x(k,j)) =

{
2j + 1, k = 1

2(j + 1), k = 2

ξ11(x(k,j)) =

{
2 + j, k = 1

n + 2 + j, k = 2

ξd(x(1,j)x(2,j)) =


3n + 4− j, d = 1

2n + 3 + j, d = 3, 5, 7, 9

2n + 1 + 3j, d = 11, 13
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ξd(ykx(k,j)) =



(k + 3)n + 4− j, k = 1, 2 d = 1, 3

5n + 4− j, k = 1 d = 5

3n + 3 + j, k = 2 d = 5

(k + 2)n + 3 + j, k = 1, 2 d = 7

3n + 2j + k + 1, k = 1, 2 d = 9

3(n + j)− k, k = 1, 2 d = 11

3(n + j) + k− 1, k = 1, 2 d = 13

where indices j are taken modulo n.

Clearly ξ(V(Bn)) = {1, 2, . . . , 2(n + 1)}. Therefore ξ is a super labeling together with ξ(E(Bn)) =

{2(n + 1) + 1, 2(n + 1) + 2, . . . , 5n + 3} which shows ξ is a total labeling.

Using (1) and (2), wtξd(C
(j)
4 ) are:

wtξd(C
(j)
4 ) =



14n + 21 + j, d = 1

13n + 20 + 3j, d = 3

12n + 19 + 5j, d = 5

11n + 18 + 7j, d = 7

10n + 17 + 9j, d = 9

11n + 8 + 11j, d = 11

10n + 11 + 13j, d = 13

Clearly wtξd(C
(j)
4 ) constitutes arithmetic progression and therefore book graphs are super (a, d)-C4-antimagic

for d = 1, 3, . . . , 13. This completes the proof.

Theorem 2. For any integer n ≥ 2, the book graph Bn admits super (a, d)-C4-antimagic labeling for differences
d = 2, 4, . . . , 10.

Proof. Case n ≡ 0 (mod 2)

For d = 2, 4, 6, 8 the labeling ξ for the set {y1, y2, y1y2}, would be labeled as:

ξd(y1) = 1

ξd(y2) =
n
2
+ 2

ξd(y1y2) = 2n + 3

and therefore the partial sum of wtξ(C
(j)
4 ) would be

ξd(y1) + ξd(y2) + ξd(y1y2) =
5n
2

+ 6 (3)

The remaining set of elements has the labeling ξ as:

ξd(x(k,j)) =


1 + j, k = 1, j = 1, 2, . . . , n

2

2j− n
2 + 1, k = 1, j = n

2 + 1, . . . , n
n
2 + 2(1 + j), k = 2, j = 1, 2, . . . , n

2

n + 2 + j, k = 2, j = n
2 + 1, . . . , n
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ξd(x(1,j)x(2,j)) =


2(n + 1) + 1 + j, d = 2

5n + 4− j, d = 4

4n + 3 + j, d = 6, 8

ξd(ykx(k,j)) =


n(k + 3) + 4− j, d = 2

n(k + 1) + 3 + j, d = 4, 6

2(n + j) + k + 1, d = 8

For difference d = 10 the labeling ξ is defined as:

ξd(y1) = 1

ξd(y2) =
3n
2

+ 2

ξd(y1y2) = 2n + 3

and the partial sum of wtξ(C
(j)
4 ) would be:

ξd(y1) + ξd(y2) + ξd(y1y2) =
7n
2

+ 6 (4)

ξd(x(k,j)) =


2j + 1, k = 1, j = 1, 2, . . . , n

2

2j− n, k = 1, j = n
2 + 1, . . . , n

3n
2 + 2− j, k = 2, j = 1, 2, . . . , n

2
5n
2 + 3− j, k = 2, j = n

2 + 1, . . . , n

ξd(x(1,j)x(2,j)) = 2n + 1 + 3j

ξd(ykx(k,j)) = 2n + (k + 1) + 3j, k = 1, 2

Clearly ξ(V(Bn)) = {1, 2, . . . , 2(n + 1)}. Therefore ξ is a super labeling and together with ξ(E(Bn)) =

{2(n + 1) + 1, 2(n + 1) + 2, . . . , 5n + 3} which shows ξ is a total labeling.

Using (1), (3) and (4), wtξ(C
(j)
4 ) are:

wtξd(C
(j)
4 ) =



14n + 20 + 2j, d = 2

13n + 19 + 4j, d = 4

12n + 18 + 6j, d = 6

11n + 17 + 8j, d = 8

11n + 15 + 10j, d = 10

Therefore wtξd(C
(j)
4 ) constitutes arithmetic progression for differences d = 2, 4, . . . , 10 when n ≡ 0 (mod 2).

Case n ≡ 1 (mod 2)

For the set {y1, y2, y1y2}, labeling ξ would be:

ξd(y1) = 1

ξd(y2) = n + 2

ξd(y1y2) = 2n + 3

and therefore the partial sum of wtξ(C
(j)
4 ) would be

ξd(y1) + ξd(y2) + ξd(y1y2) = 3(n + 2) (5)



Open J. Math. Sci. 2019, 3, 184-190 188

For differences d = 2, 4, 6, 10

ξd(x(k,j)) =



2j, k = 1, j = 1, 2, . . . , n+1
2

2j− n, k = 1, j = n+1
2 + 1, . . . , n

3
(

n+1
2

)
+ 2− j, k = 2, j = 1, 2, . . . , n+1

2

5
(

n+1
2

)
+ 1− j, k = 2, j = n+1

2 + 1, . . . , n

and for differences d = 8

ξd(x(k,j)) =


n + 2− 2j, k = 1, j = 1, 2, . . . , n−1

2

2(n + 1)− 2j, k = 1, j = n+1
2 , . . . , n

3
(

n+1
2

)
+ 1 + j, k = 2, j = 1, 2, . . . , n−1

2
n+1

2 + 2 + j, k = 2, j = n+1
2 , . . . , n

For differences d = 2, 4, . . . , 10, the set of edges has the labeling ξ defined as:

ξd(x(1,j)x(2,j)) =


5n + 4− j, d = 2

4n + 3 + j, d = 4, 6

2n + 3 + 3j, d = 8, 10

ξd(ykx(k,j)) =


n(k + 1) + 3 + j, k = 1, 2, d = 2, 4

2(n + j) + k + 1, k = 1, 2, d = 6

2n + k + 3j, d = 8, 10

Clearly ξ(V(Bn)) = {1, 2, . . . , 2(n + 1)}. Therefore ξ is a super labeling together with ξ(E(Bn)) = {2(n +

1) + 1, 2(n + 1) + 2, . . . , 5n + 3} which shows ξ is a total labeling.

Using (1) and (5), wtξ(C
(j)
4 ) are:

wtξd(C
(j)
4 ) =



27n+33
2 + 2j, d = 2

25n+31
2 + 4j, d = 4

23n+29
2 + 6j, d = 6

21n+27
2 + 8j, d = 8

19n+25
2 + 4j, d = 10

Therefore wtξd(C
(j)
4 ) constitute arithmetic progression for differences d = 2, 4, . . . , 10 when n ≡ 1 (mod 2).

Hence book graphs are super (a, d)-C4-antimagic for d = 2, 4, . . . , 10. This completes the proof.

Theorem 3. For any integer n ≥ 2, the book graph Bn admits super (a, 12)-C4-antimagic labeling.

Proof. Case n ≡ 0 (mod 2)

Under a labeling ξ, the set {y1, y2, y1y2}, would be labeled as:

ξ12(y1) = 1

ξ12(y2) =
n + 4

2

ξ12(y1y2) = 2n + 3
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and therefore the partial sum of wtξ(C
(j)
4 ) would be

ξ12(y1) + ξd(y2) + ξd(y1y2) =
5n + 12

2
(6)

ξ12(x(k,j)) =


1 + j k = 1, j = 1, 2, . . . , n

2

2j + 1− n
2 k = 1, j = n

2 + 1, . . . , n
n
2 + 2(1 + j), k = 2, j = 1, 2, . . . , n

2

n + 2 + j, k = 2, j = n
2 + 1, . . . , n

ξ12(ykx(k,j)) = 2(n + k) + 3j− 1 k = 1, 2

ξ12(x(1,j)x(2,j)) = 2(n + 1) + 3j

where indices j are taken modulo n.

Case n ≡ 1 (mod 2)

Under a labeling ξ, the set {y1, y2, y1y2}, would be labeled as:

ξ12(yk) =
3
2
(n− 1) + 2k

ξ12(y1y2) = 2n + 3

and therefore the partial sum of wtξ(C
(j)
4 ) would be

ξ12(y1) + ξd(y2) + ξd(y1y2) = 5n + 6 (7)

ξ12(x(k,j)) =


j k = 1, j = 1, 2, . . . , n+1

2

2j− n+3
2 k = 1, j = n+1

2 + 1, . . . , n
n+1

2 + 2j, k = 2, j = n
2 + 1, . . . , n

n + 2 + j, k = 2, j = n
2 + 1, . . . , n

ξ12(ykx(k,j)) = 2n + k + 3j k = 1, 2

ξ12(x(1,j)x(2,j)) = 2n + 3(1 + j)

where indices j are taken modulo n.

Clearly ξ(V(Bn)) = {1, 2, . . . , 2(n + 1)}. Therefore ξ is a super labeling together with ξ(E(Bn)) = {2(n +

1) + 1, 2(n + 1) + 2, . . . , 5n + 3} which shows ξ is a total labeling.

Using (1), (6) and (7), wtξ(C
(j)
4 ) are:

wtξ12(C
(j)
4 ) =

{
3(3n + 5) + 12j n ≡ 0 (mod 2)
23n+25

2 + 12j n ≡ 1 (mod 2)

Hence book graphs are super (a, 12)-C4-antimagic. This completes the proof.
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