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Abstract. In this paper, we present a new viscosity technique of nonex-
pansive mappings in the framework of CAT(0) spaces. The strong conver-
gence theorems of the proposed technique is proved under certain assump-

tions imposed on the sequence of parameters. The results presented in this
paper extend and improve some recent announced in the current literature.
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1. Introduction

The study of spaces of nonpositive curvature originated with the discovery of
hyperbolic spaces, and flourished by pioneering works of J. Hadamard and E.
Cartan in the first decades of the twentieth century. The idea of nonpositive cur-
vature geodesic metric spaces could be traced back to the work of H. Busemann
and A. D. Alexandrov in the 50’s. Later on M. Gromov restated some features
of global Riemannian geometry solely based on the so-called CAT(0) inequality
(here the letters C, A and T stand for Cartan, Alexandrov and Toponogov, re-
spectively). For through discussion of CAT(0) spaces and of fundamental role
they play in geometry , we refer the reader to Bridson and Haefliger [1].
As we know, iterative methods for finding fixed points of nonexpansive mappings
have received vast investigations due to its extensive applications in a variety of
applied areas of inverse problem, partial differential equations, image recovery,
and signal processing; see [2, 3, 4, 5, 6, 7, 8, 9, 10] and the references therein.
One of the difficulties in carrying out results from Banach space to complete
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CAT(0) space setting lies in the heavy use of the linear structure of the Banach
spaces. Berg and Nikolaev [4] introduce the noton of an inner product-like no-
tion( quasilinearization) in complete CAT(0) spaces to resolve these difficulties.
Fixed-point theory in CAT(0) spaces was frst studied by Kirk [11, 12, 13]. He
showed that every nonexpansive (singlevalued) mapping defned on a bounded
closed convex subset of a complete CAT(0) space always has a fxed point.
Since then, the fxed-point theory for single-valued and multivalued mappings
in CAT(0) spaces has been rapidly developed. In 2000, Moudaf’s [14] introduce
viscosity approximation methods as following:

Theorem 1.1. [14] Let C be a nonempty closed convex subset of the real CAT(0)
space X. Let T be a nonexpansive mapping of C into itself such that Fix(T ) is
nonempty. Let f be a contraction of C into itself with coefficient θ ∈ [0, 1). Pick
any x0 ∈ [0, 1), let {xn} be a sequence generated by

xn+1 =
γn

1 + γn
f(xn) +

1

1 + γn
T (xn), n ≥ 0

Where {γn} is a sequence in (0, 1) satisfying the following conditions:

(1) lim
n→∞

γn = 0,

(2)
∞∑

n=0
γn = ∞,

(3)
∑∞

n=0 |
1

γn+1
− 1

γn
| = 0,

Then {xn} converges strongly to a fixed point x∗ of the mapping T , which is also
the unique solution of the variational inequality

⟨x− f(x), x− y⟩ ≥ 0, ∀ y ∈ Fix(T ),

in other words, x∗ is the unique fixed point of the contraction PFix(T )f , that is
PFix(T )f(x

∗) = x∗.

Shi and Chen [15] studied the convergence theorems of the following Moudaf’s
viscosity iterations for a nonexpansive mapping in CAT(0) spaces.

xn+1 = tf(xn)⊕ (1− t)T (xn) (1)

xn+1 = αnf(xn)⊕ (1− αn)T (xn) (2)

They proved that {xn} defned by (1) and {xn} defned by (2) converged strongly
to a fxed point of T in the framework of CAT(0) space. In 2017, Zhao et al.
[16] applied viscosity approximation methods for the implicit midpoint rule for
non-expansive mappings

xn+1 = αnf(xn)⊕ (1− αn)T

(
xn ⊕ xn+1

2

)
, ∀n ≥ 0.

C.Y. Jung et al. [17], proposed two generalized viscosity implicit rules:

xn+1 = αnf(xn)⊕ (1− αn)T (snxn ⊕ (1− sn)xn+1) , (3)

xn+1 = αnxn ⊕ βf(xn) + γnT (snxn ⊕ (1− sn)xn+1). (4)
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Motivated and inspired by the idea of C.Y. Jung et al. [17], In this paper, we
extend and study the implicit viscosity rules of nonexpansive mappings in the
framework of CAT(0) spaces

xn+1 = T (yn),
yn = αn(wn)⊕ βnf(wn)⊕ γnT (wn),

wn = xn⊕xn+1

2 .

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X
such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In
particular, c is an isometry and d(x, y) = l. The image α of c is called a geodesic
(or metric) segment joining x and y. When it is unique, this geodesic segment
is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two
points ofX are joined by a geodesic, andX is said to be uniquely geodesic if there
is exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊂ X is said
to be convex if Y includes every geodesic segment joining any two of its points. A
geodesic triangle △(x1, x2, x3) in a geodesic metric space (X, d) consists of three
points x1, x2,and x3 in X (the vertices of △) and a geodesic segment between
each pair of vertices (the edges of △). A comparison triangle for the geodesic
triangle △(x1, x2, x3 in (X, d) is a triangle △(x1, x2, x3) := △(x1, x2, x3) in the
Euclidean plane E2 such that dE2d(xi, xj) = d(xi, xj)for i, j = 1, 2, 3.
A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom.
Let △ be a geodesic triangle in X, and let △ be a comparison triangle for
△. Then, is said to satisfy the CAT(0) inequality if for all x, y ∈ △ and all
comparison points x, y ∈ △,

d(x, y) = dE2(x, y) (5)

Let x, y ∈ X and by the Lemma 2.1(iv) of [18] for each t ∈ [0, 1], there exist a
unique point z ∈ [x, y] such that

d(x, z) = td(x, y), d(y, z) = (1− t)d(x, y). (6)

From now on, we will use the notation (1− t)x⊕ ty for the unique fixed point z
satisfying the above equation.
We now collect some elementary facts about CAT(0) spaces which will be used
in the proofs of our main results.

Lemma 2.1. [18] Let X be a CAT(0) spaces.

• For any x, y, z ∈ X and t ∈ [0, 1],

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z) (7)

• For any x, y, z ∈ X and t ∈ [0, 1],

d2((1− t)x⊕ ty, z) ≤ (1− t)2d(x, z) + td2(y, z)− t(1− t)d2(x, y) (8)
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Complete CAT(0) spaces are often called Hadamard spaces (see [1]). If x, y1, y2
are points of a CAT(0) spaces and y0 is the midpoint of the segment [y1, y2],

which we will denoted by (y1⊕y2)
2 , then the CAT(0) inequality implies

d2
(
x,

y1 ⊕ y2
2

)
≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2). (9)

This inequality is the (CN) inequality of Bruhat and Tits [19]. In fact, a geodesic
space is a CAT(0) space if and only if it satisfes the (CN) inequality (cf. [1],
page 163).

Definition 2.2. Let X be a CAT(0) space and T : X → X be a mapping. Then
T is called nonexpensive if

d(T (x), T (y)) ≤ d(x, y), x, y ∈ C

Definition 2.3. Let X be a CAT(0) space and T : X → X be a mapping. Then
T is called contraction if

d(T (x), T (y)) ≤ θd(x, y), x, y ∈ C θ ∈ [0, 1)

Berg and Nikolaev [4] introduce the concept of quasilinearization as follow. Let

us denote the pair (a, b) ∈ X ×X by the
−→
ab and call it a vector. Then, quasilin-

earization is defined as a map

⟨., .⟩ : (x×X)× (X ×X) −→ R
defined as

⟨
−→
ab,

−→
cd⟩ = 1

2
(d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)) (10)

it is easy to see that ⟨
−→
ab,

−→
cd⟩ = ⟨

−→
cd,

−→
ab⟩, ⟨

−→
ab,

−→
cd⟩ = −⟨

−→
ba,

−→
cd⟩ and ⟨−→ax,

−→
cd⟩ +

⟨
−→
xb,

−→
cd⟩ = ⟨

−→
ab,

−→
cd⟩ for all a, b, c, d ∈ X. We say that X satisfies the Cauchy-

Schwarz inequality if

⟨
−→
ab,

−→
cd⟩ ≤ d(a, b)d(a, c)

for all a, b, c, d ∈ X. It is well-known [4] that a geodesically connected metric
space is a CAT(0) space of and only if it satisfy the Cauchy-Schwarz inequality.
Let C be a non-empty closed convex subset of a complete CAT(0) space X. The
metric projection Pc : X → C is defined by

u = Pc(x) ⇐⇒ inf{d(y, x) : y ∈ C}, ∀x ∈ X

Definition 2.4. Let Pc : X → C is called the metric projection if for every
x ∈ X there exist a unique nearest point in C, denoted by Pcx, such that

d(x, Pcx) ≤ d(x, y), y ∈ C

The following theorem gives you the conditions for a projection mapping to be
non-expensive.

Theorem 2.5. Let C be a non-empty closed convex subset of a real CAT(0)
space X and Pc : X → X a metric projection. Then
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(1) d(Pcx, Pcy) ≤ ⟨−→xy,
−−−−→
PcxPcy⟩ for all x, y ∈ X

(2) Pc is non-expensive mapping , that is, d(x, pcx) ≤ d(x, y) for all y ∈ C

(3) ⟨
−−−→
xPcx,

−−→
yPcy⟩ ≤ 0 for all x ∈ X and y ∈ C.

Further if, in addition, C is bounded, then F (T ) is nonempty. The following
Lemmas are very useful for proving our main results:

Lemma 2.6. (The demiclosedness principle) Let C be a nonempty closed convex
subset of the real CAT(0) space X and T : C → C such that

xn ⇀ x∗ ∈ C and (I − T )xn → 0.

Then x∗ = Tx∗. (Here → (respectively ⇀) denotes strong (respectively weak)
convergence.)

Moreover, the following result gives the conditions for the convergence of a non-
negative real sequences.

Lemma 2.7. Assume that {an} is a sequence of nonnegative real numbers such
that an+1 ≤ (1−βn)an+δn,∀n ≥ 0, where {βn} is a sequence in (0, 1) and {δn}
is a sequence with

(1)
∑∞

n=0 βn = ∞.

(2) limn→∞ sup δn
βn

≤ 0 or
∑∞

n=0 |δn| < ∞.

Then lim
n→∞

an → 0.

2.1. The Main Result.

Theorem 2.8. Let C be a non-empty closed convex subset of a complete CAT(0)
space X and T : C −→ C be a non-expensive mapping with Fix(T ) ̸= ∅. Let
f : C −→ C be a contraction with coefficient θ ∈ [0, 1) and for arbitrary initial
point x0 ∈ C. Let {xn} be a sequence generated by

xn+1 = T (yn),
yn = αn(wn)⊕ βnf(wn)⊕ γnT (wn),

wn = xn⊕xn+1

2 ,

where {αn}, {βn} and {γn} are the sequence in (0, 1) satisfying the following
conditions:

(1) αn + βn + γn = 1,
(2) limn−→∞ αn = 0 = limn−→∞ βn and limn−→∞ γn = 1,
(3)

∑∞
n=0 |αn+1 − αn| < ∞,

(4)
∑∞

n=0 |βn+1 − βn| < ∞,
(5) limn−→∞ d(xn, T (xn)) = 0.

Then {xn} converges strongly to a fixed point x∗ of the mapping T , which is also
the unique solution of the variational inequality

⟨
−−−→
xf(x),−→xy⟩ ≥ 0, ∀ y ∈ Fix(T ),

in other words, x∗ is the unique fixed point of the contraction PFix(T )f , that is
PFix(T )f(x

∗) = x∗.
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Proof. We divide the proof into four steps.
Step 1. Firstly we show that the sequence {xn} is bounded. Indeed take
p ∈ Fix(T ) arbitrary, we have

d(xn+1, p)

= d(T (yn), p)

= d(T (αn(wn)⊕ βn(wn)⊕ γn(wn)), p)

≤ d(αn(wn)⊕ βn(wn)⊕ γnT (wn), p)

= d(αn(wn)− αnp+ βn(wn)− βnp+ γnT (wn) + αnp+ βnp, p)

≤ αnd((wn), p) + βnd((wn), p) + γnd(T (wn), p)

≤ αn

2
d((xn), p) +

αn

2
d((xn+1), p)

+βnd((wn), f(p)) + βnd(f(p), p) + γnd(T (wn), p)

=
αn

2
d((xn), p) +

αn

2
d((xn+1), p) + θβd((wn), p) + βd(f(p), p)

+ γn

(
1

2
d(xn, p) +

1

2
d(xn+1, p)

)
=

(
αn + γn + θβn

2

)
d(xn, p) +

(
αn + γn + θβn

2

)
d(xn+1, p)

+
γn
2
d(xn+1), p) + βnd(f(p), p)

=

(
1− βn + θβn

2

)
d(xn, p) +

(
1− βn + θβn

2

)
d(xn+1, p)

+
γn
2
d(xn+1), p) + βnd(f(p), p).

It follows that(
1− 1− βn + θβn

2

)
d(xn+1, p) =

(
1− βn + θβn

2

)
d(xn, p) + βnd(f(p), p).

implies that

(1 + βn(1− θ))d(xn+1, p) ≤ (1− βn(1− θ))d(xn, p) + 2βnd(f(p), p). (11)

Since βn, θ ∈ (0, 1), 1− βn(1− θ) ≥ 0. Moreover, by (11) and αn + βn + γn = 1,
we get

d(xn+1, p)

=
1− βn(1− θ)

1 + βn(1− θ)
d(xn, p) +

2βn

1 + βn(1− θ)
d(f(p), p)

≤
[
1− 2βn(1− θ)

1 + βn(1− θ)

]
d(xn, p) +

[
2βn(1− θ)

1 + βn(1− θ)

](
1

1− θ
d(f(p), p)

)
.

Thus we have

d(xn+1, p) ≤ max

{
d(xn, p),

1

1− θ
d(f(p), p)

}
.
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By applying induction, we obtain

d(xn+1, p) ≤ max

{
d(x0, p),

1

1− θ
d(f(p), p)

}
.

Hence, we conclude that {xn} is bounded. Consequently, we deduce immediately
from it that {f(wn)} and {T (wn)} are bounded.
Step 2. Now, we prove that lim

n→∞
d(xn+1, xn) = 0

d(xn+1, xn)

= d(T (yn), T (yn−1))

= d(T (αn(wn)⊕ βn(wn)⊕ γn(wn)), T (αn−1(wn−1)

⊕βn−1(wn−1)⊕ γn−1(wn−1)))

≤ d(αn(wn)⊕ βn(wn)⊕ γnT (wn), [αn−1(wn−1)

⊕βn−1(wn−1)⊕ γn−1T (wn−1)])

≤ αn

2
d(xn+1, xn) +

αn

2
d(xn, xn−1)

+
1

2
|αn − αn−1|d ((xn−1 + xn), 2T (wn−1))

+βnd(f(wn), f(wn−1)) + |βn − βn−1|d(f(wn−1), T (wn−1))

+γnd(T (wn), T (wn−1))

=
αn

2
d(xn+1, xn) +

αn

2
d(xn, xn−1) +

(
1

2
|αn − αn−1|+ |βn − βn−1|

)
M

+θβnd(wn, wn−1) + γn(wn, wn−1)

=
αn

2
d(xn+1, xn) +

αn

2
d(xn, xn−1) +

(
1

2
|αn − αn−1|+ |βn − βn−1|

)
M

+
θβn

2
d(xn+1, xn) +

θβn

2
d(xn, xn−1) +

γn
2
d(xn+1, xn) +

γn
2
d(xn, xn−1)

=

(
αn + γn + θβn

2

)
d(xn+1, xn) +

(
αn + γn + θβn

2

)
d(xn, xn−1)

+

(
1

2
|αn − αn−1|+ |βn − βn−1|

)
M

where M > 0 is constant such that

M ≥ max

{
sup
n≥0

d((xn + xn+1, 2T (wn−1)), sup
n≥0

d(f(wn−1), T (wn−1))

}
.

It gives(
1− αn + θβn + γn

2

)
d(xn+1, xn)

=

(
αn + θβn + γn

2

)
d(xn, xn−1) +

(
1

2
|αn − αn−1|+ |βn − βn−1|

)
M
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implies that(
1− 1− βn + θβn

2

)
d(xn+1, xn)

=

(
1− βn + θβn

2

)
d(xn, xn−1) +

(
1

2
|αn − αn−1|+ |βn − βn−1|

)
M

implies

(1 + βn(1− θ))d(xn+1, xn)

≤ (1− βn(1− θ))d(xn, xn−11) + (|αn − αn−1|+ 2|βn − βn−1|)M.

Thus, we have

d(xn+1, xn) ≤
(
1− βn(1− θ)

1 + βn(1− θ)

)
d(xn, xn−1)

+
M

(1 + βn(1− θ))
(|αn − αn−1|+ 2|βn − βn−1|) .

Since βn, θ ∈ (0, 1), 1 + βn(1− θ) ≥ 1 and
(

1−βn(1−θ)
1+βn(1−θ)

)
≤ 1− βn(1− θ), thus

d(xn+1, xn) ≤ [1− βn(1− θ)]d(xn, xn−1)

+
M

(1 + βn(1− θ))
(|αn − αn−1|+ 2|βn − βn−1|) .

Since
∑∞

n=0 βn = ∞,
∑∞

n=0 |αn+1 − αn| < ∞,and
∑∞

n=0 |βn+1 − βn| < ∞, by
the Lemma (2.7) we have lim

n→∞
d(xn+1, xn) = 0.

Step 3. In this step, we claim that

lim sup
x→∞

⟨
−−−−−→
x∗f(x∗),

−−−→
x∗xn⟩ ≤ 0,

where x∗ = PFix(T )f(x
∗).

Indeed, we take a subsequence {xni} of {xn} which converges weakly to a fixed
point p of T . Without loss of generality, we may assume that {xni} ⇀ p. From
lim
n→∞

d(xn, T (xn) = 0 and the Lemma (2.6) we have p = Tp. This together, with

the properity of metric projection implies that

lim sup
x→∞

⟨
−−−−−→
x∗f(x∗),

−−−→
x∗xn⟩ = lim sup

x→∞
⟨
−−−−−→
x∗f(x∗),

−−−→
x∗xni⟩

= lim sup
x→∞

⟨
−−−−−→
x∗f(x∗),

−→
x∗p⟩

≤ 0.

Step 4. Finally, we show that xn → x∗ as n → ∞. Now, we prove that
lim
n→∞

d(xn+1, xn) = 0. Now, we again take x∗ ∈ Fix(T ) is the unique fixed point

of the contraction PFix(T )f . Consider

d2(xn+1, xn)

= d2(T (yn), x
∗)
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= d2(T (αn(wn)⊕ βn(wn)⊕ γn(wn)), x
∗)

≤ d2(αn(wn)⊕ βn(wn)⊕ γnT (wn), x
∗)

= d2(αn(wn)− αnx
∗ + βn(wn)− βnx

∗ + γnT (wn) + αnx
∗ + βnx

∗, x∗)

= α2
nd

2((wn), x
∗) + β2

nd
2((wn), x

∗) + γ2
nd

2((wn), x
∗)

+2αnβn⟨
−−−→
x∗wn,

−−−−−→
x∗f(wn)⟩+ 2αnγn⟨

−−−→
x∗wn,

−−−−−−→
x∗T (wn)⟩

+2βnγn⟨
−−−−−→
x∗f(wn),

−−−−−−→
x∗T (wn)⟩

= α2
nd

2((wn), x
∗) + β2

nd
2((wn), x

∗) + γ2
nd

2((wn), x
∗)

+2αnβn⟨
−−−→
x∗wn,

−−−−−→
x∗f(wn)⟩+ 2αnγnd(xn, x

∗)d(T (wn), x
∗)

+2βnγn⟨
−−−−−→
x∗f(wn),

−−−−−−→
x∗T (wn)⟩

≤ (α2
n + γ2

n)d
2(wn, x

∗) + 2αnγnd
2(wn, x

∗)

+2βnγnd
2(f(wn), f(x

∗))d2(wn, x
∗) +Kn

≤ (α2
n + γ2

n)d
2(wn, x

∗) + 2θβnγnd
2(wn, x

∗) +Kn

≤ (α2
n + γ2

n + 2θβnγn)d
2(wn, x

∗) +Kn

≤ ((1− β2
n)

2 + 2θβnγn)d
2(wn, x

∗) +Kn

where

Kn = β2
nd

2(f(wn), x
∗) + 2αnβn⟨

−−−→
x∗wn,

−−−−−→
x∗f(wn)⟩

+2βnγn⟨
−−−→
f(wn)x

∗,
−−−−−−→
T (wn)x

∗⟩

it become

[(1− β)2 + 2θβnγn)]d
2(wn, x

∗) ≥ d2(xn+1, xn)−Kn

implies √
(1− β)2 + 2θβnγnd(wn, x

∗) ≥
√

d2(xn+1, xn)−Kn

implies

1

2

√
(1− β)2 + 2θβnγnd(wn, x

∗)(d(xn+1, x
∗) + d(xn, x

∗))

≥
√

d2(xn+1, xn)−Kn

implies

1

4
((1− β)2 + 2θβnγn)(d

2(xn+1, x
∗) + d2(xn, x

∗)) + 2(d(xn+1, x
∗)

+d(xn, x
∗)) ≥ d2(xn+1, xn)−Kn

implies

1

4
((1− β)2 + 2θβnγn)(d

2(xn+1, x
∗) + d2(xn, x

∗)) + (d2(xn+1, x
∗)

+d2(xn, x
∗)) ≥ d2(xn+1, xn)−Kn
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implies [
1− 1

2
((1− β)2 + 2θβnγn)

]
d2(xn+1, x

∗)

≤
[
1

2
((1− β)2 + 2θβnγn)

]
d2(xn+1, x

∗) +Kn.

Thus, we have

d2(xn+1, xn)

≤
1
2 ((1− β)2 + 2θβnγn)

1− 1
2 ((1− β)2 + 2θβnγn)

d2(xn+1, x
∗)

+
Kn

1− 1
2 ((1− β)2 + 2θβnγn)

=
1− 1

2 ((1− β)2 + 2θβnγn)− 1 + ((1− β)2 + 2θβnγn)

1− 1
2 ((1− β)2 + 2θβnγn)

d2(xn+1, x
∗)

+
Kn

1− 1
2 ((1− β)2 + 2θβnγn)

=

[
1− 1− (1− β)2 + 2θβnγn)

1− 1
2 ((1− β)2 + 2θβnγn)

]
d2(xn+1, x

∗)

+
Kn

1− 1
2 ((1− β)2 + 2θβnγn)

.

Note that

0 < 1− 1

2
((1− β)2 + 2θβnγn) < 1

implies

1− (1− β)2 + 2θβnγn)

1− 1
2 ((1− β)2 + 2θβnγn)

≥ 1− ((1− β)2 + 2θβnγn).

Thus, we have

d2(xn+1, xn)

≤ 1− ((1− β)2 + 2θβnγn)d
2(xn+1, x

∗) +
Kn

1− 1
2 ((1− β)2 + 2θβnγn)

= [((1− β)2 + 2θβnγn)]d
2(xn+1, x

∗) +
Kn

1− 1
2 ((1− β)2 + 2θβnγn)

= (1− β)2d2(xn+1, x
∗) +

Kn

1− 1
2 ((1− β)2 + 2θβnγn)

Since 0 < 1− βn < 1, this gives (1− βn)
2 < (1− βn) and

d2(xn+1, xn) ≤ (1− β)d2(xn+1, x
∗) +

Kn

1− 1
2 ((1− β)2 + 2θβnγn)

(12)



An implicit viscosity technique of nonexpansive mapping in CAT(0) spaces 11

by lim
n→∞

αn = lim
n→∞

βn = 0 and lim
n→∞

γn = 1, we have

lim sup
x→∞

Kn

βn(1− 1
2 ((1− β)2 + 2θβnγn))

= lim sup
x→∞

(
β2
nd

2(f(wn), x
∗) + 2αnβn⟨

−−−→
x∗wn,

−−−−−→
x∗f(wn)⟩

(1− 1
2 ((1− β)2 + 2θβnγn))

+
2βnγn⟨

−−−−−→
x∗f(wn),

−−−−−−→
x∗T (wn)⟩

(1− 1
2 ((1− β)2 + 2θβnγn))

)
≤ 0. (13)

From (12) and (13) and Lemma (2.6), we have

lim
n→∞

d(xn+1, x
∗) = 0.

This implies that xn → x∗ as n −→ ∞. This complete the proof. �
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